
www.manaraa.com

PREDICTING THE USE OF PAIRED PROGRAMMING:

APPLYING THE ATTITUDES OF APPLICATION DEVELOPMENT MANAGERS

THROUGH THE TECHNOLOGY ACCEPTANCE MODEL

by

Mark S. Zecca

ALAN CHMURA, Ph.D., Faculty Mentor and Chair

KATHLEEN HARGISS, Ph.D., Committee Member

STEVEN BROZOVICH, D.Sc., Ph.D., Committee Member

Raja K. Iyer, Ph.D., Dean, School of Business & Technology

A Dissertation Presented in Partial Fulfillment

Of the Requirements for the Degree

Doctor of Philosophy

Capella University

July 2010

www.manaraa.com

UMI Number: 3412451

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 3412451

Copyright 2010 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manaraa.com

© Mark Zecca, 2010

ALL RIGHTS RESERVED

www.manaraa.com

 ii

Abstract

Business managers who look for ways to cut costs face difficult questions about the

efficiency and effectiveness of software engineering practices that are used to complete

projects on time, on specification, and within budget (Johnson, 1995; Lindstrøm &

Jeffries, 2004). Theoretical models such as the Theory of Reasoned Action (TRA) have

linked intention and attitude to predictable behavior. The Technology Acceptance Model

(TAM) as proposed by Davis (1985, 1989) furthers the theory of predicting behavior to

the acceptance of technology practices through the understanding of perceived ease of

use and perceived usefulness. These theories are applied to the practices of paired and

individual programming. The research in this study surveys the attitudes of software

development managers towards the practices of paired and individual programming and

applies a generally accepted technology acceptance model to the collected data as a

theoretical framework to indicate the acceptance and usage of such a practice in their

software engineering environments. The findings do not support the position that the

paired programming practice is used more than the individual programming practice. The

data also indicates that while a software development managers’ type of business does

not affect usage of the paired or individual programming practice, the manager’s years of

experience does. This study suggests follow-on research and possible experimentation in

the future use of paired programming as a viable, cost effective practice for software

engineering.

www.manaraa.com

 iii

Dedication

This work is dedicated to the memory of my father, George Zecca, who always

told me that whatever you can think of, you can do. I spend more time trying to disprove

his theory, yet his advice and wisdom continue to be proved true. I also dedicate this

work to the memory of my mother, Betty Zecca, whose limitless support, humor, and

assurance gave me the energy to move through my studies. My faith tells me they are

with me and even now, I am just starting to realize the unlimited support they were to me.

My professional life would not be possible without the example and mentorship

of Mr. Virgil Slayton, former Vice President of Operations for American Airlines. He

taught me honesty, loyalty, and truth in the workplace and was the embodiment of the

perfect professional leader. He provided me a model and an example that I still strive to

become. I wish also to dedicate this work to Mr. Max Hopper, former CIO at American

Airlines-AMR Corp, whose insight and forward vision of technology have always

inspired me. I wish to recognize the current President and CEO of Mitchell 1, Dave

Ellingen, for consistently supporting me and encouraging my efforts to complete this

program.

Finally, I dedicate this work to my lovely wife, Barbara. Her patience and

understanding is boundless and her loving support allowed me the time and the access to

complete my research studies. She was and continues to be my cheerleader and source of

energy. Without her, I would not have seen the end of this endeavor. With her, I know all

things are possible!

www.manaraa.com

 iv

Acknowledgments

The wisdom and understanding of many people contributed to this work. I would

like to acknowledge my mentor and committee chair, Dr. Alan Chmura. I was his first

Mentee at Capella University, and together we traversed the jungles of process and policy

as well as various avenues of research represented in this study. Doctor C, as I have

called him, is a man of infinite patience, a resource of infinite wisdom, and a man with a

heart the size of Wyoming. Without him, I would simply not have progressed nor would I

have produced this document. He remains for me and will always be a life mentor, tutor,

friend, and overall Wiseman from Wyoming!

I would also like to acknowledge Dr. Kathleen Hargiss, my committee member

from the School of Business and Technology. Dr. Hargiss continues to be an inspiration

and sounding board, especially in research methods as well as attention to detail. During

my research, I was constantly thinking what would Dr. Hargiss want to see? I will

continue to ask this question for any research I do in the future. She embodies the

meaning of what it means to be a scholarly practitioner.

I would like to acknowledge Dr. Steven Brozovich, my external committee

member and co-worker at Snap-on Corporation. Steven was my grounding for theory and

scientific application as well as part-time uncle, long lost brother, and father confessor!

His math-prowess is only exceeded by his generosity. I would also like to offer a special

thank you to my colleagues, Dr. Gary Shelton and Dr. Virginia Ross. Their advice,

editorial assistance, collaborative support, and especially their friendship were invaluable.

Virginia, thank you so much for being the editor extraordinaire!

www.manaraa.com

 v

Table of Contents

List of Tables vii

List of Figures viii

CHAPTER 1. INTRODUCTION 1

Introduction to the Problem 1

Background of the Study 4

Statement of the Problem 14

Purpose of the Study 15

Rationale 16

Research Questions 18

Significance of the Study 24

Definition of Terms 26

Assumptions and Limitations 31

The Nature and Theoretical Framework of the Study 32

Organization of the Remainder of the Study 33

CHAPTER 2. LITERATURE REVIEW 36

The Theory of Reasoned Action and the Theory of Planned Behavior 38

The Technology Acceptance Model 47

The Paired Programming Practice 64

www.manaraa.com

 vi

CHAPTER 3. METHODOLOGY 92

Research Design 94

Sampling 99

Instrumentation and Measures 102

Data Collection 103

Data Analysis 105

Validity and Reliability of the Survey 116

Ethical Considerations 126

CHAPTER 4. RESULTS 128

Survey Response Results 129

Primary Hypotheses Analysis 134

CHAPTER 5. DISCUSSION, IMPLICATIONS, RECOMMENDATIONS 154

Discussion 154

Implications 163

Recommendations 166

REFERENCES 167

APPENDIX; ASSESSING THE ATTITUDES OF SOFTWARE DEVELOPMENT

MANAGERS ON THE USE OF PAIRED PROGRAMMING AS COMPARED TO

INDIVIDUAL PROGRAMMING 186

www.manaraa.com

 vii

List of Tables

Table 1. The Technology Acceptance Model Mathematical Formula 21

Table 2. Comparison of Individual and Paired Programmer Efforts 79

Table 3. U.S. Government Standard Industrial Classification Codes 97

Table 4. Pre-test for Reliability Using the Cronbach Alpha Method 121

Table 5. Construct Items Applied to the Practice of Paired/Individual Programming
 135

Table 6. Mean TAM Score Between Paired and Individual Programming for PEU. 136

Table 7. Mean TAM Score Between Paired and Individual Programming for PU 138

Table 8. Correlation of Constructs for Paired Programming 141

Table 9. Correlation of Constructs for Individual Programming 143

Table 10. Correlations Between Perceived Usefulness, Perceived Ease of Use, and Self-

Reported Usage 144

Table 11. Regression Analysis on the Effect of Usefulness and Ease of Use Usage 146

Table 12. Correlational & Mean Difference Tests for Business-Type Analysis 147

Table 13. ANOVA Between Paired and Individual Usage and Business Types 148

Table 14. Analysis of Variance Between Paired and Individual Programming

Experience 150

Table 15. ANOVA Between Paired and Individual Programming Experience 151

Table 16. Review of Hypotheses Conclusions 152

www.manaraa.com

 viii

List of Figures

Figure 1. The Agile Methodology Movement 2

Figure 2. Underlying Concept of the Basic User Acceptance Model 10

Figure 3. Technology Acceptance Model 11

Figure 4. Theoretical Framework for this Study 20

Figure 5. A Time Line of Theoretical Models Used in this Study 37

Figure 6. Studies on Paired Programming 40

Figure 7. Sample Survey Scale 103

Figure 8. Research Model with Correlations Variables 107

Figure 9. A Sample Question from the eSurvey 129

Figure 10. Research Model with Correlation Values – Paired Programming 142

Figure 11. Research Model with Correlation Values – Individual Programming 144

Figure 12. Plotting a Manager’s Experience Level to Practice Usage 159

www.manaraa.com

CHAPTER 1. INTRODUCTION

Introduction to the Problem

A software development crisis was first publicly revealed in the Standish Group’s

1994 publication, The Chaos Report. The crisis was simply that software development

projects were failing to be completed or even abandoned prior to completion due to

incomplete requirements and poor estimations of software engineering resources and

time. This and other studies were important in highlighting a need for better software

development methods that were accurate, cost effective, and efficient. The traditional

means of software engineering included methodologies such as Software Development

Life Cycle (SDLC) and Waterfall methodologies (Mugridge, 2008). These generally

represented a process of gathering detailed requirements, writing technical specifications,

coding to the specifications, integrating various single coding branches, testing the code,

checking the code-based functionality against the specifications, and compiling and

implementing the code into a working production program. The majority of work was

carried out by programmers working individually with segmented specifications (El

Emam & Koru, 2008). Various layers of management and integration were needed to

weld programs together from the work of various independent software engineers.

Many new software development methodologies have surfaced in the last 15

years (Mugridge, 2008). One such methodology is the Agile Programming Movement

(see Figure 1).

 1

www.manaraa.com

The Chain of the Agile Programming Movement, Methodology, & Practice

The Agile Programming
Movement

Extreme
Programming
Methodology

Scrum
Development
Methodology

Crystal Clear
Development
Methodology

Dynamic
Systems

Development

Adaptive
Software

Development

Shared
Understanding

Continuous Process Fine Scale Feedback Programmer
Welfare

Coding Standards Continuous
Integration

Paired
Programming

Sustainable
Pace

Collective Code
Ownership

Refactoring or
Design
Improvement

Planning Game

Simple design Small Releases Test Driven
Development

System Metaphor Whole Team

Practice

Method

Movement

Figure 1. The chain of the Agile programming movement, methodology, and practice. A
breakdown of the Agile movement shows the progression of various methodologies and
within those methodologies, various practices. Paired Programming is shown as a
practice of the Extreme Programming methodology.

The Agile Movement was a key factor in the development of a loose consortium

of software development managers and software business leaders. Their purpose was to

attempt to pursue alternative and more cost-effective and accurate means of software

engineering. Members of this consortium wanted to depart from traditional

methodologies and engage in iterative development. This included tight communication

between customers and developers in a rhythm of communicated requirements to

expertly authored code (Cao & Ramesh, 2008). Within the Agile movement, the Extreme

Programming development method became popular (Highsmith, 1999). Noted for its 12

 2

www.manaraa.com

practices, it employed radically new forms of software engineering in an attempt to

produce accurate code related to customer requirements (Beck, 1999).

Part of the Extreme Programming methodology included the practice of paired

programming. In the practice of paired programming, two programmers work in tandem

(programming pairs) at the same workstation, in contrast to the traditional practice of

programmers working individually. This practice has become popular over the last 10

years. Various studies, as indicated in Chapter 2, propose that this practice is more

efficient and productive than traditional, individual programming. It appears that many

businesses are questioning the costs and effectiveness of this practice. It also appears that

the excitement of early adoption of this practice has given way to questions about its

actual cost effectiveness. There are also questions about the accuracy of some of the

studies that initially indicated that this practice was more efficient than traditional

practices.

A good measure of the paired programming practice’s success is its acceptability

in software development groups (Williams, 1999). There is a significant volume of peer-

reviewed literature with experimental results on various aspects of the paired

programming practice. Those results do not necessarily translate to the actual usage and

employment of paired programming in today’s software development groups. Many of

the experiments attempted to demonstrate the relative empirical value of paired

programming compared to individual programming and/or other types of programming

methodologies (Arisholm & Sjøberg, 2003). Understanding the comparative efficiency or

effectiveness of paired programming and other methodologies does not predict its current

and future use or acceptance in the field. This study measures the intentions and attitudes

 3

www.manaraa.com

of software development managers about their software engineering practices in order to

understand the usage and acceptance of the paired programming practice. Specifically,

the focus of this study is on the perceived ease-of-use and perceived usefulness of paired

programming, using a structured and accepted scientific methodology. The focus of the

research concentrates on how software development managers have perceived paired and

individual programming practices, and how they have developed and engaged behaviors

that have actually employed paired programming as a software engineering practice.

Background of the Study

History of the Agile Methodology Movement

In February of 2001, at a ski resort lodge in the Wasatch Mountains of Snowbird

Utah, 17 people met to discuss, debate, and find common ground on a better form of

software development that was practical and simple. What emerged was the Agile

Methodology Movement of software development. Representatives were present from

methodologies such as Extreme Programming (XP), SCRUM, Dynamic Systems

Development Method (DSDM), Adaptive Software Development (ASD), Crystal

Development Method (CDM), Feature-Driven Development, Pragmatic Programming,

and other software development methodologies (Southerland, 2004). The representatives

from these methodologies were sympathetic to the need for an alternative to traditional

documentation driven software development processes. What emerged from this meeting

was the Manifesto for Agile Software Development, better known as the Agile Manifesto

(Highsmith, 1999). This group, named The Agile Alliance, included attendees who did

not believe that a collection of independent and creative thinkers could agree on any

substantive principles, let alone the 12 Agile principles (Highsmith).

 4

www.manaraa.com

At the root of the Agile Methodology Movement, there are a series of basic

principles that helped create the Manifesto. These included: (a) Customer satisfaction by

rapid, continuous delivery of useful software, (b) Working software that is delivered

frequently in weeks rather than months, (c) The most significant and principal measure of

progress is actual working software, (d) Changes in requirements, even late ones, are

welcomed, (e) Close, daily cooperation between business people and developers is

fostered, (f) Face-to-face conversation and co-location is the best form of

communication, (g) Projects are built around motivated individuals, who should be

trusted, (h) Continuous attention to technical excellence and good design is always

maintained, (i) Simplicity in code is elegant, (j) Self-organizing teams are the best to set

up, (k) Regular adaptation to changing circumstances is promoted and supported, and (l)

At regular intervals the programming team reflects on better ways to do things and then

tunes their processes accordingly (Highsmith, 2002, 2004).

Although the Manifesto provides some specific ideas about more efficient and

effective software development, a more significant motivation drives many software

development managers. Software development managers are motivated by the values of

trust and respect for others and the promotion of organizational goals (Highsmith, 2001).

These goals promote a model based on people, collaboration, creativity, and the building

of organizational communities. Agile practitioners concentrate on delivering good

products to customers by operating in an environment that meets the needs of the

customer and promotes a value-based culture (Highsmith, 2004).

A series of studies were conducted prior to the formation of the Agile Software

Programming Methodologies Movement (Beck, 1999; Nosek, 1998). One of the

 5

www.manaraa.com

methodologies studied was Extreme Programming (XP). This methodology actually

existed prior to the advent of the Agile Alliance. Extreme Programming is credited with

providing the basic motivation of the Agile Methodology Movement in providing a more

rapid, less bureaucratic method of software engineering.

A History of Extreme Programming

Extreme Programming was created by Kent Beck in 1996 during his work on the

Chrysler Comprehensive Compensation System (C3) payroll project. Beck became the

C3 project leader in March of that year and began to refine the development methodology

used in the project. Beck’s publication, Extreme Programming Explained (2000), was the

seminal work on the Extreme Programming methodology. Chrysler canceled the C3

project in February 2000, and although some saw that initial failure as a problem with

XP, the methodology became popular throughout the software engineering field,

especially during the dot.com era. Currently tens of thousands of software-development

projects continue to use Extreme Programming as a methodology of choice (Beck, 2000).

Although Extreme Programming itself is relatively new, many of its practices

have been in use for a considerable amount of time. It is the purpose of this methodology

to take software engineering best practices to an extreme or never-tried-before level. For

example, the practice of test-first-development -- planning and writing tests before each

story or set of requirements -- was used as early as NASA's Project Mercury in the early

1960s (Larman & Basili, 2003). Other practices now used in the XP methodology such as

refactoring, modularity, bottom-up, and incremental designs were described by Brodie

(1984).

 6

www.manaraa.com

The focus of Extreme Programming is to reduce the cost of software change. In

traditional system development methodologies, such as the Structured System

Application Design Methodology (SSADM), the requirements for the system are

determined at the beginning of the development project and often fixed or refactored

from that point on. This means that the cost of changing the requirements at a later stage

(a common feature of traditional software engineering projects) will be high. By

implementing the practices of Extreme Programming, a software development manager

can reduce the cost of change by introducing basic values, principles, and practices. By

applying Extreme Programming practices, a software development project can be more

flexible to changes without major disruptions in actual efficiency and effectiveness of the

team.

A Review of Paired Programming

Extreme Programming’s paired programming practice pairs up software

development engineers or programmers into two-person teams. One person is called the

driver or director, the other is called the navigator or co-pilot. The pair uses a single

workstation to construct code with the director actually typing the code and the navigator

dictating the code line and constructing the code logic. Both members make a constant

review of the code for correct syntax and logical form. The pair uses stories, use cases,

and pre-arranged acceptance tests to guide them in the engineering of the code. The

customer or requirement provider presents stories, which are not tight specifications, but

rather loose explanations of what the customer would like to see in the program (Beck &

Fowler, 2001).

 7

www.manaraa.com

Unlike the traditional or the Waterfall approach to software development, stories

within the Extreme Programming methodology provide only a guideline to the software

engineering pair. The results of their work are generated from their knowledge and the

application of currently employed architecture and software practices. The pair

determines the best way to present the user’s needs as represented through their

interaction with the customer (in person and in stories), and then apply software-enabling

technologies to provide the desired results for the customer. Customers join the pair

during engineering, contributing clearer explanations of the desired work or results as the

pair creates the code. Groups of stories that work together and are executable are called

iterations. This allows the iterations to be placed into production sooner rather than

waiting until the end of the entire programming development cycle to determine if

everything works. Each iteration is considered to be executable or able to provide the

required results as desired by the customer. The chain of iterations or executable

segments, tied together, form the working application program (Beck, 1999, 2000).

Today the controversy continues over whether paired programming is as cost

effective and/or efficient, as compared to individual programming. Continued

experimentation in empirically valid venues can increase the reliability of the data that

may point to whether paired programming is or is not perceived as easy to use and as

more useful than individual programming. It does not appear that previous

experimentation can necessarily predict the actual adoption of the paired programming

practice or to what extent its use will be. Development managers who tend to engage

software engineering methodologies and practices for their companies constantly make

decisions about those practices based on their past experience and attitudes (Davis, 1989).

 8

www.manaraa.com

By understanding the attitudes of software development managers concerning paired

programming practices, it may be possible to predict the continued and/or future use of

paired programming as a viable software development practice based on perceived ease

of use and perceived usefulness.

The Role of a Theoretical Framework to Advance the Study

Davis (1989) indicated that a methodological consideration of metrics for

explaining and predicting the use of technology in processes and systems had significant

practical value. By measuring intentions and attitudes, he was able to predict behavior

and usage through a process called The Technology Acceptance Model (TAM) (see

Figure 2). He noted this model’s value was evident in the commercial environment by

providing better business systems at better cost-points. This process continues to be

important for information technology managers who must select and implement

processes and products that support the operation and growth of their companies.

 9

www.manaraa.com

Underlying Concept of the Basic User Acceptance Model

Individual reactions
to using information

technology

Intentions to use
information
technology

Actual use of
information technology

Figure 2. Underlying concept of the Basic User Acceptance Model. The progression
graph shows a representation of Davis’ concept of user acceptance, which is a core
premise of his Technology Acceptance Model. From A technology acceptance model for
empirically testing new end-user information systems: Theory and results. (Doctoral
dissertation, Massachusetts Institute of Technology-Sloan School of Management, 1985)
MIT Management Library No. 1721.1/15192, p. 10. Copyright 1985 by the
Massachusetts Institute of Technology Press.

The purpose of such metrics lies in a growing concern within the IT industry of

controlling development costs and providing solid returns on application development

investments. Users of metrics and methodologies have sought, for several decades, to

eliminate the many false starts and incomplete software development projects as well as

the many failed or abandoned projects experienced by businesses (see Figure 3).

 10

www.manaraa.com

X3

X2

X1

Design
Feature(s)

USER MOTIVATION

Technology Acceptance Model

Cognitive
Response

Affective
Response

Behavioral
Response

Perceived
Usefulness

Perceived Ease
of Use

Behavior
Toward
Usage

Theory of
Reasoned

Action

Theory of
Planned
Behavior

Actual
Usage
Within a
Line of
Business

Actual
System Use

Figure 3. The Technology Acceptance Model. The model as designed by Davis (1985,
1989) showing the applicable psychometric supporting theories.

IT executives today are pressured to control the human capital and financial

resources consumed by software development projects especially when there are

sometimes questionable or even completely non-valuable results (El Emam & Koru,

2008). The Johnson and Standish Groups found, in a study of over 360 executives, that

over half of all software development projects presented significant cost and time

overruns (Johnson, 1994, 1995). They found that in 1995, businesses in the United States

over-spent their Information Technology (IT) development budgets by $59 billion and

threw away another $81 billion on projects that were not completed or were prematurely

halted (Montealegre & Keil, 2000; Smith & Keil, 2003; Wallace & Keil, 2004). In a later

study, they found that over 70% of information technology (IT) software projects failed

or were abandoned (The Standish Group, 2001, 2004). The logical conclusion is that IT

software development capability cannot contribute to the corporation’s financial

 11

www.manaraa.com

performance when software projects are not completed or delivered on time and within

planned budgets (Markus & Keil, 1994).

Successful software development projects have discernable elements, which

include involvement by the customer or user, controlled and minimized scope with

reasonable and manageable milestones, standardized software infrastructure, and the

discipline of a formal software development methodology (Standish Group, 2001). In the

last decade, the software development industry has uncovered several ways and means to

improve the success of software projects. These initiatives include focused efforts to

create better and more understandable software development practices, iterative or

modular based programming efforts, and the reuse of existing knowledge and software

artifacts for future coding projects (Wallace & Keil, 2004). By improving the methods by

which software engineering is accomplished, improvements can be made in the

successful implementation of software projects and an increase in valuation of software

development investments can be realized within businesses.

The last 30 years have demonstrated a very explosive environment in software

engineering. Development managers must produce a never-ending backlog of application

development projects with continual demands for the most up-to-date features using the

latest in development methodologies (Lindstrøm & Jeffries, 2004). Multiple empirical

surveys confirm that most software projects fail when measured against even the most

minor success metrics. Most projects fail due to unclear requirements, requirements that

fail to solve underlying business issues, requirements that consistently change, untested

software, and software that is created from incomplete requirements (Lindstrøm &

Jeffries, 2004).

 12

www.manaraa.com

These conditions spawned efforts by many developers to drop multiple step

methods and detailed design practices. Some wrote papers that proposed lighter, more

flexible and open methods. In 1999, Beck published his book, Extreme Programming

Explained: Embrace Change that solidified the Extreme Programming method of

software development (Beck, 1999). It described the Extreme Programming method as a

series of practices that was lighter and more open in its approach to software engineering.

The trend of developing software in a more open and flexible environment became

popular in software development circles (see Figure 1).

Extreme programming is the most popular and pervasive methodology used in the

Agile movement. Its primary tenets include simplicity, communication, feedback, and

courage. It not only espouses the particular values of the Agile Manifesto, but also

employs a flexible yet simple set of programming practices. Paired programming is one

of the most popular of its practices (Lindstrøm & Jeffries, 2004). This practice engages a

review by an additional programmer, other than the coder, resulting in better design,

more complete testing, and overall code results that are more accurate and bug free. Bugs

are errors in code that fail to return results or fail to return the correct results (Grenning,

2001).

Critics of paired programming cite that two resources working in the place of one

are cost prohibitive and wasteful (Cockburn & Williams, 2001). As indicated above,

initial experiments at the University of Utah indicated that interactions between the pair

working in a collaborative environment, when measured for overall effectiveness as

compared to programmers working alone, contributed to more effective and efficient

code production (Williams, 2000). These experiments were held in an academic setting,

 13

www.manaraa.com

used students with prior knowledge of the aims of the experiment, and did not use

commercially directed business programmers. Questions continue to mount throughout

the Information Technology industry as to the viability and practical applicability of

paired programming in actual business environments (Cockburn & Williams, 2001).

Statement of the Problem

Negative economic factors are pressuring businesses today to cut costs and

operate leaner. The use of the paired programming practice, which places two

programmers together coding on one workstation, generates the question of why this

programming practice is economically viable in today’s business climate. Specifically, it

raises the question as to what are software development managers’ intentions and

attitudes toward using this practice and what is the possible future use of paired

programming as compared to individual programming. If the paired programming

practice is a solution to the problems of software engineering being on time and within

budget, is it successfully being used by software development managers and to what

extent?

There is evidence that the perception of many business leaders, especially those

not experienced in the software or applications development business, view paired

programming as a costly personnel resource practice (The Standish Group International,

2004). Many of those same business leaders apply pressure on their software

development managers to maintain an effective and efficient work environment

(Hartwick & Barki, 1994; Ives & Olsen, 1984). The pressure to complete software

projects that are completed on time and within budget is a common theme in industrial

publications as well as academic journals (Mugridge, 2008). Software development

 14

www.manaraa.com

managers look for better and easier ways to produce useful code, while driving toward

on-time results that are within or under budget (Krishnakumar & Sukumaran, 1997;

Putnam, 1978).

Purpose of the Study

The objectives of this research study are focused on providing an empirical basis

on which practitioners, namely software development managers and business leaders

with engaged software development resources, might decide to adopt or not adopt the

practice of paired programming as a software development practice. Specifically, the

objectives of this research are to: (a) Survey development managers on their attitudes

toward the use of paired programming as opposed to individual programming, (b) Use the

results of the data collected on attitudes and intentions and then apply The Technology

Acceptance Model to the variables of perceived usefulness and perceived ease of use, (c)

Determine whether the standard business type, as defined by the standard industrial

classification (SIC) of a participating manager’s company, correlates with the use or non-

use of paired programming, and (d) Establish the predicted use or non-use of paired

programming by sending a validated and reliable sample of software development

manager attitudes and intentions through Davis’ (1989) Technology Acceptance Model.

A review of the current literature shows no evidence of a study that has applied

the TAM to predict the acceptance and use of paired programming. The results of this

research contribute to the body of knowledge through the survey of development

managers and the engagement of that survey data through the mathematical TAM model

(Davis, 1993). The ramifications to the field are widespread. Strong affirmation for the

use of paired programming will continue to support the current peer-studies, which find

 15

www.manaraa.com

that paired programming is a cost effective and nimble alternative to the practice of

individual programming. Conversely, a lack of support for paired programming will

provide additional momentum for a tier of software development and business leaders

that feel this practice is over-rated, costly, and inefficient (Nawrocki & Wojciechowski,

2001). Moderate support for either paired programming or individual programming

practices will indicate that the field is still ambivalent towards paired programming and

that more education, experience, and data are needed to form a more delineated industry

direction.

It is normal for practitioners to evaluate various practices, processes, tools and

even systems to understand their acceptability and/or understand their reasons for a lack

of acceptance (Davis, 1989). “A study of how usefulness and ease of use can be

influenced by various functional and interoperable factors such as externally engaged

software development methods is important” (Alavi, 1984, p. 562). The purpose of this

study is not to promote the practice of paired programming but to understand user

acceptance and usage in the attempt to thwart what Davis (1989) says is “The possibility

of dysfunctional impacts generated by information technology [practices]” (p. 335).

Rationale

The result of this study indicates a gap in the body of knowledge regarding the

predicted usage of paired programming by analyzing the responses of software

development managers. The methodology used in this study is a widely applied

theoretical model called The Technology Acceptance Model, to determine the predictable

use of the software technology practice of paired programming. Perceived ease of use and

perceived usefulness are the basic variables of The Technology Acceptance Model. The

 16

www.manaraa.com

results of the research from this study support or discredit previously and/or currently

held beliefs that paired programming is more easy to use and is more useful as a software

engineering practice than individual programming practices.

In Chapter 2 of this study, there is substantive research demonstrated in the areas

of The Theory of Reasoned Action, The Theory of Planned Behavior, and The

Technology Acceptance Model. Sufficient reliability and validity have been established

for the use of The Technology Acceptance Model as a viable theoretical framework from

which to study the acceptance and use of a technology practices, processes, or tools. Over

146 various technology practices and tools have used The Technology Acceptance Model

as a method to demonstrate its acceptance and use. The operation of this study follows

the same track, using The Technology Acceptance Model to measure the acceptance and

usage of the paired programming practice. There has not been a study that applied the

paired programming and individual programming practices through The Technology

Acceptance Model to determine possible usage. The results of this study add to the body

of knowledge concerning the degree of acceptance and use of paired programming as

perceived by software development managers, using a well-tested and accepted

theoretical modeling tool such as The Technology Acceptance Model.

The findings resulting from this research could yield some significant results,

including: (a) Influencing whether paired programming becomes established or remains

established at company types closely related to the US Department of Commerce,

Standard Industrial Code, (b) Giving business leaders a reason to support or not support

the practice of paired programming in their companies, (c) Determining if the use or

acceptability of paired programming is influenced by the type of business being

 17

www.manaraa.com

considered, and (d) Determining the general acceptability of paired programming as a

software development practice.

In a separate, but related consideration, the results support (or challenges) the

research method and applicability of The Technology Acceptance Model as a predictive

tool in the determination of the perceived use and perceived usefulness of a technology

practice (Bagozzi, 2007). To date, no research study has applied the TAM to the practice

of paired programming to determine its perceived ease of use and perceived usefulness,

acceptance and usage in a business environment.

Davis (1989), in his seminal work on perceived usefulness, ease of use, and user

acceptance of information technology, states the simple rationale for a study such as this

as well as other studies that attempt to determine the acceptance of technology by users.

He states,

Although there has been a growing pessimism in the field about the ability to
identify measures that are robustly linked to user acceptance, the view taken here
is much more optimistic. User reactions to computers are complex and
multifaceted. But if the field continues to systematically investigate fundamental
mechanisms driving user behavior, cultivating better and better measures and
critically examining alternative theoretical models, sustainable progress is within
reach. (p. 335)

Research Questions

The primary research question of this study is how and to what extent, software

development managers, perceive the paired programming practice as useful and easy to

use, as compared to individual programming practices. Consequently, to what extent can

The Technology Acceptance Model (TAM) predict the acceptance and continued usage

of the paired programming practice? Other research questions that are addressed in this

study include: (a) R1: Are there observed differences in perceived ease of use of the

practice of paired programming versus individual programmers working alone? (b) R2:

 18

www.manaraa.com

Are there observed differences in perceived usefulness of the practice of paired

programming versus individual programmers working alone? (c) R3: To what extent is

the paired programming practice more acceptable/used than individual programmers

working alone? (d) R4: How does the type of business correlate to the acceptance/usage

value of paired programming? (e) R5: What is the relationship between a software

development manager’s development experience and his or her acceptance/use of the

paired programming practice?

It is important to consider a number of factors in order to answer this primary

question and the various subsequent questions. Some factors are based on pertinent

studies from relevant and supporting theory such as the Theory of Reasoned Action

(TRA). This theory associates attitudes with reasoned or predicted action. The

Technology Acceptance Model (TAM) is another theory that predicts the value (amount)

of an action or adoption based on empirical data representing attitudes of possible

adopters. The objective in this study is to identify correlations between key elements and

factors of software development managers’ intentions and attitudes about paired

programming. The results of the research project the general probability of adoption, use

of the paired programming practice, and provide data for future studies and/or

experiments (see Figure 4). There are few scientific studies existing today where paired

programming has been systematically researched within actual software engineering

environments. There is little solid evidence or empirical data showing the perceived

benefits of this practice (Hulkko & Abrahamsson, 2005). By addressing these research

questions, future experimentation can focus on parameters that yield greater amounts of

 19

www.manaraa.com

relevant data for this field study and ultimate decision-making information for software

development managers.

The Theoretical Models Used in this Study.

Theory of
Reasoned Action
Understanding

Attitudes’ Effect
on Use

Technology
Acceptance Model
Applying Attitudes

to the Use of a
Particular

Technology
Practice

+
Theory of
Planned
Behavior

+ +

Paired
Programming as a

Software
Development

Practice
=

The Continued Use of Paired Programming in Software
Development Organizations based on the Acceptance and
Usage of the Practice by Software Development Managers

Figure 4. The theoretical models used in this study. The figure shows the various theories
and models that provide the basis for the research methodology in the study of the
acceptance and usage of the paired programming practice.

Hypotheses

The following hypotheses were explored using Davis’ (1989) original research

methods for proving the acceptance and usage of a technology practice and/or tool, and

Rigopoulos and Askounis’ (2007) application of the TAM framework to a technology

practice (see Table 1). The hypotheses are best viewed through the five constructs or

general variables of the TAM survey. These include perceived ease of use, perceived

usefulness, acceptance/usage, effects of programming experience, and effects of a

programmer’s business type. Additional respondent experience data such as business type

 20

www.manaraa.com

and previous use and experience with paired programming was collected and used for

statistical analyses that support the confirmation or rejection of the following hypotheses.

Table 1. The Technology Acceptance Model Mathematical Formula

The Technology Acceptance Model is expressed in four linear and progressive formulas:

 Variable Formula
1) EOU = βXi+ε ∑

= ni ,1

2) USEF = βiXi +βn+1 EOU + ε ∑
= ni ,1

3) ATT = β1 EOU + β2 USEF + ε

4) USE = β1 ATT + ε
In the case where:

Variable Definition
Xi = Design Feature i, i=1, n
EOU = Perceived Ease of Use
USEF = Perceived Usefulness
ATT = Attitude Toward Using
USE = Actual Use of the System
βi = Standardization Partial Regression Coefficient
ε = Random Error Term
Note. From Davis, F. (1985). Technology Acceptance Model for Empirically Testing New End-User
Information Systems: Theory and Results. Massachusetts Institute of Technology, Sloan School of
Management, p. 25. Copyright 1985 by the Massachusetts Institute of Technology Press.

The first hypothesis, which attempts to address research question R1: Are there

observed differences in perceived ease of use of the practice of paired programming

versus individual programmers working alone, is expressed as:

Ho1: The mean TAM score of the perceived ease of use construct will not be

significantly different for paired programmers versus individual programmers working

alone.

 21

www.manaraa.com

Ha1: The mean TAM score of the perceived ease of use construct will be

significantly different for paired programmers versus individual programmers working

alone.

The second hypothesis, which attempts to address research question R2: Are there

observed differences in perceived usefulness of the practice of paired programming

versus individual programmers working alone, is expressed as:

Ho2: The mean TAM score of the perceived usefulness construct will not be

significantly different for paired programmers versus individual programmers working

alone.

Ha2: The mean TAM score of the perceived usefulness construct will be

significantly different for paired programmers versus individual programmers working

alone.

The hypothesis, which attempts to address research question R3: To what extent

is the paired programming practice more acceptable/used than the practice of individual

programmers working alone, is expressed in the following statements:

Ho3: The paired programming practice will not be significantly perceived to be

more used by software development managers than the individual programming practice

as determined through a comparison of means of the USE variable in each practice.

Ha3: The paired programming practice will be significantly perceived to be more

used by software development managers than the individual programming practice as

determined through a comparison of means of the USE variable in each practice.

 22

www.manaraa.com

The hypothesis, which attempts to address research question R4: How does the

type of business correlate to the acceptance/usage value of paired programming, is

expressed in the following statements:

Ho4: There is no statistically significant mean difference between a software

development manager’s type of business and the level of acceptance/usage of the paired

programming practice.

Ha4: There is a statistically significant mean difference between a software

development manager’s type of business and the level of acceptance/usage of the paired

programming practice.

The hypothesis, which attempts to address research question R5: What is the

relationship between a software development manager’s development experience and

their acceptance/use of the paired programming practice, is expressed in the following

statements:

Ho5: There is no statistically significant mean difference between the variables of

a software development manager’s development experience and the level of their

acceptance/usage of the paired programming practice.

Ha5: There is a statistically significant mean difference between the variables of a

software development manager’s development experience and the level of their

acceptance/usage of the paired programming practice.

The statistical tests and methods of analysis are found in the Data Analysis

section of Chapter 3. The values derived from the tests in Hypothesis 1 through

Hypothesis 5 establish a basis upon which future studies, especially those using a

 23

www.manaraa.com

longitudinal approach, might be made. This and other reflections of the possibilities for

extended use of these tests are made in Chapter 5.

Significance of the Study

In several controlled experiments, it has been shown that paired programming

provided improvements, sometimes significant, over individual programming (Arisholm,

Gallis, Dybå, & Sjøberg, 2007). These improvements ranged from functional quality or

correctness to other measures of quality including a reduced time to market with only

minor additional overhead or cost of effort (Müller, 2004; Nosek, 1998). Yet additional

studies counter these experimental results indicating that there were little or no functional

improvements or improvements on correctness as compared with individual programmer

development efforts (Nawrocki & Wojciechowski, 2001). Still other studies point to

paired programming as being more a label or a popular movement that focuses on skilled

and motivated workers with already existing high morale. The results of these types of

workers are going to be naturally productive despite the paired practice or any other

systematic method as long as they are not overly constrained by organizational

bureaucracy (Hilkka, Tuure, & Matti, 2005).

These studies leave software development managers in a quandary as how best to

service their companies with the most cost effective and efficient code producing groups.

Business managers and leaders are faced with economic downturn limits and reductions

in capital investment capabilities (Ebert & deNeve, 2001). Using two people where at

some point in the past there was only one, does not seem to make empirical, logical, or

business sense (Lindstrøm & Jeffries, 2004). This can put development managers and

business leaders at odds in determining the possible success (measured in terms of ease of

 24

www.manaraa.com

use and usefulness) of the paired programming practice. By surveying and analyzing the

attitudes of development managers about paired programming, using an acceptable

theoretical construct such as the TAM, the research results in an added predictive value to

either paired programming’s use or rejection within any generic applications

development organization. Using the results of this study, software development

managers could sway the use or rejection of the paired programming practice and

possibly create new directions in software development through changes in their own

software engineering practices.

There are over 146 reported studies on the use of The Technology Acceptance

Model to determine and predict current and future behavior and acceptance of a

technology practice, process, or tool. The common use of TAM provides a rich

methodological backdrop for this study and a solid foundation of previous research using

its theoretical framework. Baker-Eveleth, Eveleth, O’Neill, and Stone (2006) applied the

TAM to the use of laptop exams and security software. Keat and Mohan (2004) applied

the TAM to various electronic commerce tools to determine ease of use and usefulness.

Pei, Zhenxiang, and Chunping (2007) applied the TAM to measure the acceptance, ease

of use, and usefulness of Chinese business-to-business website designs. Perez, Sanchez,

Carnicer, and Jimenez (2004) applied the TAM to teleworking processes and practices.

Pikkarainen, Pikkarainen, Karjaluoto, and Pahnila (2004) applied the TAM to the

acceptance of online banking in third world countries.

These are just examples of the application of the TAM toward various practices,

processes, and tools. This study’s results will replicate the success of these previous

studies with a focus on the paired programming practice of software development

 25

www.manaraa.com

engineering. A review of the literature reveals that paired programming has yet to be

applied to The Technology Acceptance Model and there are no formal reported results or

formal studies associated with this model in peer-reviewed works. The results of this

research provide pertinent data to fill the gap in the body of knowledge concerning the

acceptance of paired programming by software development managers as calculated

through the application of The Technology Acceptance Model.

Definition of Terms

The following definition of terms expose the reader to a greater understanding of

the concepts, hypotheses, and findings of this study:

Agile Methodologies – A title that refers to a group of software development

methodologies that promote development iterations, open collaboration, and process

adaptability throughout the life cycle of a project. The Agile methodology emphasizes

working software as the primary measure of progress. Combined with the preference for

face-to-face communication, agile methods usually produce less written documentation

than other methods.

Director – A position or role in the technique where two programmers work

together at one workstation, one programmer (the driver or director) is assigned to typing

the actual code while the other (the navigator) reviews each line of code as it is typed.

Ease of Use –The measure or degree to which a person believes that using a

particular system will result in a freedom of effort. A person may believe that the system

is easy enough to use and that the performance benefits of usage are outweighed by the

effort of using the application.

 26

www.manaraa.com

Effectiveness – The production of a desired, decided, or decisive result and/or the

fulfillment of a purposeful or intent, especially as viewed after a related or associated

event.

Efficiency – The production of a desired effect without waste. It is the ratio of the

useful energy delivered by a dynamic system in relation to the energy supplied to it.

Extreme Programming – A software engineering methodology (and a form of

agile software development) prescribing a set of daily stakeholder practices that embody

and encourage the specific values of Communication, Simplicity, Feedback, Courage,

and Respect. Proponents believe that exercising these values will lead to a development

process that is more responsive to customer needs and be more agile than traditional

methods, while creating software of better quality.

Information Technology (IT) – The general term and acronym used in this study

to include the various disciplines in the management information system sciences and

information system disciplines. It refers to previous acronyms such as MIS (management

information systems) or IS (information systems). For simplicity and convention, the

term IT will be a general term meant to encompass these and other acronyms usually

associated with Information Technology sciences and disciplines.

Iterative Development – The scheduling strategy within Agile methodologies

where time is set aside to revise and improve parts of the system. It does not presuppose

incremental development, but works very well with it. The output from an iteration is

reviewed for modifications and/or for any revisions that could be targets for successive

iterations.

 27

www.manaraa.com

Navigator – A position or role that reviews the code that is written in the

technique where two programmers work together at one workstation. While reviewing,

the observer or navigator also considers the strategic direction of the work, coming up

with ideas for improvements and likely future problems to address. This frees the director

to focus all of his or her attention on the tactical or syntactical aspects of completing the

current tasks, using the navigator as a safety net and guide. The two programmers switch

roles frequently.

Paired Programming – is a software engineering practice in which two

programmers work together at one workstation. One types in code while the other scans

each line of code as it is typed. The person typing is called the driver or director. The

person reviewing the code is called the observer or navigator. The two programmers

switch roles frequently. While reviewing, the observer also considers the strategic value

of the work, creating new ideas for improvements and possible future problems that

might occur. This liberates the driver to focus on the operational aspects of completing

the planned task, using the observer as both a guide and a safety net. XP programmers

write all production code in pairs, two programmers working together at one machine.

Paired programming has been shown by many experiments to produce better software at

similar or lower cost compared to programmers working by individually. For the

purposes of this study, the term pair programming and paired programming will be

considered synonymous.

Single Programming – A traditional programming practice where one

programmer works alone engineering and/or coding software routines toward a final

 28

www.manaraa.com

executable programming on toward a contribution to a team-effort that combines the

contributions of many single programmers into an executable running program.

Software Development Life Cycle (SDLC) – The model or methodology that is

used to develop systems, most generally computer software systems. It adheres to

important phases that are essential for developers, such as planning, analysis, design, and

implementation. The oldest model that is originally regarded as SDLC is the waterfall

model. It is a model that involves a sequence of stages in which the output of each stage

becomes the input for the next.

Standard Industrial Classification (SIC) – The Standard Industrial Classification

(SIC) is a United States government system for classifying industries by a four-digit code.

Established in 1937, it was recently updated by using a six-digit code and was renamed

the North American Industry Classification System (NAICS), released in 1997. Certain

government departments and agencies, such as the U.S. Securities and Exchange

Commission (SEC), still use the acronym SIC to represent standard industry (six-digit)

codes (see Table 3).

Technology Acceptance Model (TAM) – A model designed to predict a particular

technology tool, process, or practice’s acceptance and usage. It embraces two variables,

that of perceived usefulness and perceived ease of use.

Theory of Planned Behavior (TpB) – The theory, based on the Theory of

Reasoned Action, that indicates the possibility of predicting planned and deliberate

behavior from attitudes and non-voluntary behavior characteristics (Ajzen & Fishbein,

1980; Ajzen, 1991).

 29

www.manaraa.com

Theory of Reasoned Action (TRA) – The theory and model that is drawn from

social psychology, which also represents a fundamental as well as influential force of

basic human behavior. It is an individual’s positive or negative feelings about performing

a target behavior or demonstrating an acceptance or rejection of an action, process, tool,

or application.

Usefulness – The measure or degree to which a person believes that using a

particular system would enhance his or her job performance or help them do their job

better.

User Stories – A user story is a software system requirement formulated as one or

two sentences in the everyday language of the user. These are written by the customers of

a software project and are their main instrument to communicate their requirements and

influence the development of the software and its functionality.

Waterfall Programming Methodology –A sequential software development model

for the creation of application software in which development is seen as flowing steadily

downwards (like a waterfall) through the phases of requirements analysis, design,

implementation, testing (validation), integration, and maintenance. The origin of the term

waterfall is often credited to Royce (1970). Although Royce did not use the actual term

waterfall in this article, he ironically presented the model as an example of a flawed, non-

working software engineering method. Today the term is often used as a derogatory label

to software development methods that are heavily bureaucratic, wasteful, and over-

complex.

 30

www.manaraa.com

Assumptions and Limitations

The goal of the research in this study is to collect the intentions and attitudes of

software development managers on paired programming and compare them to their

intentions and attitudes on single programmer work. An email-connected web survey was

the vehicle used to collect data on intentions and attitudes associated with perceived

usefulness and perceived ease of use of the paired programming practice. To achieve a

reasonable response and correlation of data the following assumptions and challenges

were encountered: (a) Although Extreme Programming is a popular and well-known

methodology, not all software development managers responding to the survey are

familiar with this methodology (Turk, France, & Rumpe, 2005), (b) Development

managers will respond honestly to the survey questions, (c) A random list of 500

software development managers will be a representative sample of software development

managers’ intentions and attitudes, (d) The preponderance of emails will be from, but not

limited to, the United States, (e) Surveys are common in the IT industry and IT

executives tend to be cooperative when asked to do surveys that will yield new

technology information, (f) In this study, the intentions and attitudes of software

development managers were measured; and when applied to the theoretical model of the

TAM, they indicate the likelihood of adoption or rejection of the paired programming

practice, (g) It is assumed that Davis’ Technology Acceptance Model (1985, 1989) is an

accurate mathematical representation of an acceptance model for a technology practice,

(h) Paired programming has been identified to include variations in skill sets among

programmers, which can affect the possible acceptance of this practice by businesses

(Arisholm et al., 2007), (i) It was assumed that a small pre-test sample of questionnaires

 31

www.manaraa.com

will be sufficient to validate the data, and (j) It was assumed that at least 150 out of 500

surveys would be returned completed.

The Nature and Theoretical Framework of the Study

The Technology Acceptance Model (TAM) as proposed by Davis (1985, 1989)

and refined by Davis, Bagozzi, and Warshaw (1989) and Venkatesh, Morris, Davis, and

Davis (2003) are employed in this study as the theoretical framework. To provide a basis

for The Technology Acceptance Model, the Theory of Reasoned Action (TRA) (Fishbein

& Ajzen, 1975; Hale, Householder, & Greene, 2003) was introduced. This forms a

psychological grounding for the use of the TAM. The TRA is drawn from social

psychology and is a significantly influential and fundamental theory of human behavior.

The TRA has been used to anticipate a wide range of behaviors and practices (Venkatesh

et al., 2003). Davis (1985) verified that the TRA was consistent in output/results with

various studies when compared within the context of other behaviors (Venkatesh et al.,

2003).

The TAM is specifically built for IT contexts and environments, and was

designed to predict IT acceptance of a practice and its acceptance in the context of the job

(Venkatesh et al., 2003). Measurement of perceived usefulness and perceived ease of use

(Davis, 1985, 1989) are used in conjunction with the measurement of actual behavior and

usage (Arisholm & Sjøberg, 2003) to predict the continued use of paired programming as

a software engineering practice. The research in this study exposes the intentions and

attitudes of software development managers as data and applies that data through the

TAM formula to indicate the continued use or rejection of the paired programming

practice in software engineering.

 32

www.manaraa.com

Statistical Package for Social Sciences (SPSS) version 15.0 and Microsoft Excel

2003 Data Analysis Packages were employed to do the electronic calculations and

reporting for the analysis. The use of a part-time statistician from Modern Analytics, Inc.

was arranged to assist with the statistical analysis calculations and data review. Two

statistical tests are core to the TAM, correlations, and linear regression. These tests were

applied to the variable constructs of perceived usefulness, perceived ease of use, and self-

reported usage in keeping with Davis’ (1985, 1989) original model (see Table 1).

Organization of the Remainder of the Study

Chapter 4 – Results

In the fourth chapter of this study, the data collected, through the survey of

software development managers, is analyzed through the TAM formula and hrough a

series of standard statistical tests. The survey used in this study returned data on the

intentions, attitudes, and use of paired programming from a sample of software

development managers. There are four basic constructs to the survey, three of which are

part of the TAM formula. These constructs are used as independent variables with the

fourth construct being used as a dependent variable. Through the process, independent

and dependant variables are identified, and through analysis, demonstrate their ability to

confirm or reject the listed null hypotheses. Tables and graphs are used to display the data

and analysis results. Each hypothesis uses a specific statistical analysis for confirmation

or rejection of its hypothesis statement.

Data collected from the administered surveys are presented in output tables. Each

section of the six-section survey, found in The Appendix, is highlighted in the first

 33

www.manaraa.com

section of Chapter 4. Data table summaries are displayed along with the mean values

associated with the sample frame used for this study. Summary calculations are made for

each survey section, and in some cases, for specific questions. The second section of this

chapter addresses each hypothesis, draws the summary data relevant to that hypothesis,

and demonstrates the results of statistical analysis against the relevant data. Tabular

representation of the analysis results pertinent to each hypothesis are graphically as well

as numerically presented.

Chapter 5 – Discussion, Implications, Recommendations

The fifth chapter synthesizes and evaluates the analysis of the collected data.

Correlations of the findings produce conclusions about the acceptability and intention to

use the paired programming or individual programming practice by a representative

sample of software development managers. The resultant data collected and analyzed on

perceived ease of use and perceived usefulness are correlated to the variables of self-

reported usage and behavioral use. The results of the study also reveal the possible effects

of business types on the use and acceptance of paired or individual programming

practices. The study also reveals whether software development managers who have used

paired programming in the past will continue or discontinue using it in the future. The

affect of business types and the continued use of paired programming, after having used

it in the past, are findings that will promote future studies.

The sections in this chapter address the evaluation and statistical analysis of each

hypothesis. Based on the analysis results, the hypotheses are confirmed or rejected with

an explanation and/or recommendation as to the meaning of the results. As this is the first

study to apply the TAM to the use of the paired programming and individual

 34

www.manaraa.com

programming practices, the findings indicate a need for further study and possible new

experimentation to determine the continued usefulness and viability of paired and

individual programming practices.

 35

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

The literature is rich in the areas of the TRA, TAM, and paired programming. The

following review of the literature is segmented into three sections that cover the TRA,

TAM, and paired programming respectively. These general areas make up the theoretical

model and structured methodology of this study.

A review of the TRA provides the basis on which the human condition navigates

between various types of responses that create direction of intention or mode of action

(Ajzen, 2005). This theory can be applied to the acceptance and usage of a practice or a

process by understanding the intentions and behaviors of an actor. Seminal works by

Ajzen and Fishbein (1980) and Ajzen (1985, 1991) reveal that connected psychological

processes between belief and attitude consistently produce a directional intention. Ajzen

and Fishbein later perfected this theory through the introduction of subjective norms and

created a series of theories around planned behavior. By understanding one’s beliefs, it is

possible to predict its effect on an actor’s attitudes, which in turn provides an indicator of

that actor’s intention toward using a process or a practice. Considerations of these

theories yield a basis on which to consider the advanced theories of The Technology

Acceptance Model (Davis, 1985, 1989).

In the second part of this review, Davis’ Technology Acceptance Model (1985,

1989) provides a logical (and mathematical) continuation of Ajzen’s and Fishbein’s

work. The literature will show the various applications of this model, based on the theory

 36

www.manaraa.com

of reasoned action and the theory of planned behavior. It establishes that the intention of

an actor can be predicted based on the perceived (by the actor) ease of use and perceived

usefulness of the proposed action or process (Davis, 1989). By understanding and/or

testing the variable strength of an actor’s perception of a process, it is possible to predict

the actual engagement of that process by the actor through comparative and empirical

values. The Technology Acceptance Models’ mathematical formula, when applied to

most technology processes, tools, or practices, can produce measurable and predictive

results about their acceptance and use (see Figure 5 for a timeline of various models used

in this study).

A Time Line of Theoretical Models Used in this Study

Theory of Logical
Consistency

(McGuire, 1960)

Theory of Reasoned
Action

1960

(Fishbein & Ajzen,
1975, 1980)

1975

Theory of
Planned
Behavior

(Ajzen 1985)

1985 1985/1989

Technology
Acceptance

Model
(Davis 1985,

1989)

Psychology Practices Technology Practices

Figure 5. A time line of theoretical models used in this study. The graph shows the time
frames and progression of the various theoretical models used in the development of The
Technology Acceptance Model.

The third part of this review will demonstrate the various contributions on the

subject of paired programming. By an understanding of the specific elements of this

Extreme Programming practice, a foundation can be constructed upon which the practice

 37

www.manaraa.com

of paired programming can be applied to The Technology Acceptance Model. The basis

of this study, which is to determine the acceptance of paired programming by software

development managers, is achieved by applying the collected intentions, beliefs, and

attitudes of those managers regarding their possible use (behavior) of paired

programming in their software engineering environments. By an enriched understanding

of the current writings on paired programming, it is possible to establish a knowledge

base on how software development managers might apply (or not apply) the practice of

paired programming based on those managers’ attitudes about the practice’s perceived

usefulness and perceived ease of use. The literature will also support additional inquiries

into the relative values of perceived effectiveness and perceived efficiency as software

development managers continue to support the demands of their businesses with

productive and cost-sensitive code engineering.

The Theory of Reasoned Action and the Theory of Planned Behavior

Literature in human psychological development indicates that people are naturally

consistent in their outward responses due to the methods they employ in processing

sensory data and information resulting in decision-making (Ajzen, 2005). The most

notable works in the translation of human attitudes-to-intention-to-action include those of

Ajzen (1985, 1991, 2002) and Fishbein and Ajzen (1975). The first theory, that of

reasoned action came from McGuire and Weiss’ theories on logical consistency (1976)

that drew together formal and statistical probability. Considering two or three related

known variables (intention and attitude), it is possible to determine a third unknown

(actual behavior). Ajzen and Fishbein matured this into their theory of reasoned action.

 38

www.manaraa.com

They later matured the theory to include the effects of controlled behavior and that of

environmental influence, to form the theory of planned behavior (Ajzen, 2005).

Theory of Reasoned Action

Fishbein and Ajzen (1975) first proposed the theory of reasoned action with the

concept that humans employ logical synthesis in their thinking and acting. Developing

this concept further, Ajzen and Fishbein (1980) proposed the theory of reasoned action.

Rather than treating the logical constructs of human information processing as a purely

psychological activity, they proposed that [human] responses were demonstrative,

observable reflections of the cognitive factors and could be explained through

independent constructs of belief, attitude, and intention. What they indicated was much

more than a construct. It was a progressive process of believing, then thinking, then

acting on a cognitive stimulus. A residual effect of this process results in attitudes. They

held that attitudes are logical results from beliefs humans have about an object of that

attitude. Intentions are created around that attitude, and the actions taken derive as well

from that attitude (Ajzen, 2005). This clearly makes a connection between what is

believed and thought, forming intentions upon which humans ultimately act (see Figure

6). By understanding the objects of those beliefs and attitudes, researchers can then

project a person’s possible intentions. Together, beliefs, attitudes, and intentions can help

predict a person’s resulting actions (Donald & Cooper, 2001).

 39

www.manaraa.com

Studies on Paired Programming

6
of
Studies

8

10

4

0

2

12

2000 20021998 1999

Figure 6. Studies on paired programming. Number of studies on paired programming per
year.

2001
Year

2003 2004

Ajzen’s and Fishbein’s work attempted to place empirical values or estimates

between attitude and behavior. Their studies dealt with mostly voluntary behavior, which

was counter to their later findings that indicated behavior was not necessarily voluntary

nor was it completely controllable (Ajzen, 1991). These findings added another

consideration of perceived behavior control. This enriched the concept of reasoned

behavior to one of planned behavior. This adds to the TRA a predictability of behavior

when it is deliberate and planned. This improved the results of the TRA and created an

additional theory, the Theory of Planned Behavior (TpB) (Ajzen, 1991).

Theory of Planned Behavior

The Theory of Planned Behavior proposes that specific attitudes projected toward

behavior of a subject will predict the behavior toward that subject, but only that subject

(Ajzen, 2002). In addition to measuring an actor’s attitudes to predict behavior, it is also

 40

www.manaraa.com

important to measure the influence on an actor’s attitude by the attitudes of other people

surrounding or involved with the actor. In this situation, the actor must have some

measure of value or reliance on the environment and/or those people that are a part of it.

The ability to predict a person’s intentions requires this additional understanding of that

person’s surrounding influences and how that influence is different from their beliefs.

This understanding is termed the influence of subject norms (Terry, Hogg, & White,

1999).

The last influence that helps to create intention is the actor’s perception whether

he or she has the ability to perform the specific behavior. If people are not able to see

themselves in control of this behavior, the intention to act is not sufficiently motivated

and less likely to happen (Notani, 1998). The previous two elements of what effects

behavior (a favorable attitude toward the specific behavior and environmentally affected

subject norms) helps to form the perceived ability to control the one’s behavior and

strengthens a person’s resolve or intention to actually perform that specific behavior

(Manstead & Parker, 1995).

TRA and TpB Scope and Application

Ajzen (1991) provided a clear set of instructions to develop studies and

questionnaires on the theories of reasoned action and planned behavior. He demonstrated

the ability to obtain data on attitudes and intention and predicted specific behavior,

through a questionnaire instrument. He validated this instrument with follow-up reviews

conducted by direct observation and other self-reporting tools. Specifically, he suggested

that the theory of reasoned action could conform to a question-based tool that would

support the evaluation of particular studies such as voting behavior, disease prevention

 41

www.manaraa.com

behavior, birth control behavior, and behavior leading to consumption (Ajzen, 1991).

Examples of the use of a question-based tool for the theory of planned behavior would be

whether to wear a seat belt, whether to examine oneself for diseases, or whether to use

condoms during sex (Ajzen, 1991).

Issues with the Application of the TRA. Mykytyn and Harrison (1993) based their

investigation on the TRA for purposes of competitive advantage in organizations

leveraging computing systems and computing products. They applied the TRA to market

studies to determine if the relationship of attitude and behavior would result in a measure

of intention and a predictor of action. They found (and confirmed) that a positive

relationship existed between behavior, intention, attitude, and subject norms

(environmental influences on behavior) as indicated by Ajzen (1991). They added that

“salient consequences” (p. 4) and the corresponding evaluations of those consequences

were the motivating actions toward the actual adoption of a course of action (or the

acceptance of a process). Mykytyn and Harrison (1993) confirmed Ajzen and Fishbein’s

TRA and noted its wide acceptance and capability to stand up to a positivistic structure

through an equation-based representation.

Davis, Bagozzi, and Warshaw (1989) had earlier completed a supportive meta-

analysis on user acceptance of computing technologies and confirmed the theories of

Ajzen & Fishbein’s original work. They also based their conclusion on an exhaustive

study by Sheppard, Hartwick, and Warshaw (1988) that consolidated over 100 various

studies that successfully applied the TRA to various practices, processes, and adoptions.

Considering that adopters’ or decision-makers’ intentions, attitudes, and

subjective norms associated with a specific adoption or decisive behavior, can be

 42

www.manaraa.com

predicted, Mykytyn and Harrison (1993) propose easier, more effective, and more

efficient ways to change or alter that behavior in order to produce desired results. They

conclude that Ajzen and Fishbein not only provided the requisite theoretical basis

regarding predictive behavior, but also provided six criteria to form a solid measurement

methodology. These criteria included: (a) Define the focused behavior with regards to

actions, subject, process, or time, (b) Identify consequences of the focused behavior and

any social entities capable of influencing it, (c) Make a choice on the most salient

consequences and influential entities within the focus, (d) Measure behavior beliefs,

normative, and surrounding beliefs, and the pressures to get others to comply, (e)

Measure intention, attitudes, and the subjective norm (based on behavior of interest), and

(f) Integrate and measure all of the above into a single questionnaire for exploring the

behavioral question (Mykytyn & Harrison, 1993).

The TRA is not without those that question its validity. Budd (1987) indicated

that some people might be aware of the theory’s assumptions and skew their response

toward a predetermined end, altering an honest result. Fazio, Lenn, and Effrein (1984)

argued that some people might not have formed an intention or attitude about a particular

subject, but due to being interviewed or by taking a survey, they may acquire an attitude

formation rather than responding with an assessment. Mykytyn and Harrison (1993)

countered by indicating that the subject matter serious enough to be surveyed, such as

important decisions in an IT area (e.g. what ERP system should be purchased), do not

lend themselves to quick judgments or hasty responses, and therefore the criticisms are

only minor considerations.

 43

www.manaraa.com

Sheppard, Hartwick, and Warshaw (1988) noted that there are limitations to the

TRA and whereas the TRA has been successfully applied in many cases for a prediction

of behavior based on intention and attitude, there are cases where the model fails to

provide the necessary framework for correct predictions. Sheppard et al., in the meta-

analysis of the TRA, demonstrated that that the model fails when the subject behavior is:

(a) Not under the person’s control, (b) The situations involves multiple possibilities or

choices, and (c) The person’s intentions are analyzed when that intention has not been

formed completely or confidently.

Ajzen and Fishbein (1980) specifically noted the model’s limitations, particularly

when goal intentions were used instead of behavioral intentions. The TRA was developed

to address behavioral intentions such as taking a pill or applying for a loan. It was not

meant to address established outcomes or results such as being relieved of a headache or

having a debt. Essentially Sheppard et al. agree with Ajzen and Fishbein on the basic

limitations of the model, that is, actions that are partially or totally out of the person’s

voluntary control fall outside the parameters of the model. Sheppard et al. (1988) points

out that Fishbein and Ajzen initially indicated that few conditions of behavior were

outside a person’s voluntary control (1975). Ajzen (1985) later modified this position

while noting a person’s ability to project him or herself into the role or behavior in

question. This extended the model to include the theory of planned behavior. It is

significant to understand that, in the use of the model, responses to intentions are

different from responses to estimations. Conclusively there are situations where one

intends to do something versus situations where one actually expects to do something.

 44

www.manaraa.com

Although a subtle difference, Sheppard et al. (1988) found that even a slight shift in

intention could alter the predictability of the outcome and the validity of the model.

Practitioner Experience with the TRA. The warnings of Sheppard et al. (1988) are

enough to warrant a review of various applications, in vitro, of the TRA and to what

extent possible validity issues or failures in predictability were experienced. Singh,

Leong, Tan, and Wong (1995) employed the TRA to measure voting behavior and model

an empirical test for predicting that behavior. The authors used belief and importance

components to ascertain the intention of the respondents to vote along a party line,

choose affiliation to a party, predict what candidate a respondent might vote for, and

motivation to be swayed by media for or against a candidate. The co-relational and

regression analysis used in their study indicated that the predictive power of the TRA

model was verified, although they suggested continued testing in certain empirical

measurements (Singh et al., 1995). From a review of the literature search, it was evident

the authors were aware of the considerations of Sheppard, Hartwick and Warshaw, and

even referred to them in various areas. The researchers did not recognize the brittle nature

between goal behavior and intentional behavior or the pending results that might have

been produced by the behavior. Their methodology did not appear to be affected by the

discrete differences in goal behavior and intention-oriented results (Singh et al., 1995).

Randall (1989) demonstrated another successful application of the TRA model in

a research study that applied the model in an attempt to explain and predict a situation of

unethical conduct. Randall’s conclusion indicated that the TRA model was able to

provide a framework that could illuminate the underlying structures of unethical

behavior, and could provide a predictive understanding of its various occurrences.

 45

www.manaraa.com

Randall agreed with Singh et al. (1995), in questioning the empirical nature of the model.

At the time of their writing, there were few empirical tests that supported the use of the

model as a predictive tool (Randall, 1989).

Randall’s timeframe of research was somewhat early in terms of the model’s

acceptance and the amount of a body of knowledge building with results that were both

qualitative and quantitative. It was found that several studies were known to Randall at

the time of her research that lent positive support for the model’s validity and possible

empirical value. Sejwacz, Ajzen, and Fishbein (1980) applied the model empirically to

predict the success of choosing a weight loss program. Jaccard and Davidson (1972)

applied the model to the use of birth control in a study attempting to predict the possible

use of various methods of family planning. Glassman and Fitzhenry (1976) used the

model to develop one of the first marketing and brand choice applications of the TRA

model. Once again, they confirmed the predictive value of the model but with less

empirical measures than causation and logical result measures.

Thomas, Bull, and Clark (1978) used the model successfully to predict the use of

public transportation. Hom, Katerberg, and Hulin (1979) used the model successfully to

predict re-enlistments in various military services. Pomazal and Jaccard (1976) used the

model successfully to predict the participation levels and pre-disposition for blood

donations. These and other researchers found that the TRA model was successful as a

predictive tool when applied to a particular intentional behavior. Although most were

quantitative in their approach, the point that Singh et al. (1995) indicates concerning a

lack of empirical evidence capability within the model can be observed. This may be a

 46

www.manaraa.com

perspective of time as Singh et al. published 15 years after the initial body of studies that

lent credence to the TRA model.

Extending the TRA Model to Applications in the TpB Model. The Theory of

Reasoned Action was developed from models involved in the study of psychological

expectancy values (Ajzen, 1987). The TRA was an attempt to estimate the differences

between behavior and attitude with behavior considered voluntary. It was found that

behaviors were sometimes involuntary and, in some cases, not under the control of the

subject. The Theory of Planned Behavior introduced the addition of how subjects

perceived their ability to control their environment and/or the outcome of the mixture of

intention and attitude. The ability to control behavior became an added element to the

TRA, creating the Theory of Planned Behavior and the ability to predict behavior,

especially when it is deliberate and consciously planned (Manstead & Parker, 1995).

Predicting behavior is fundamental to the theoretical framework of this study. As will be

seen in the next section, The Technology Acceptance Model is a framework built upon

the ability to predict use or adoption of a process or action by surveying the attitude,

intention, and finally the applied behavior of the subject.

The Technology Acceptance Model

Sharda, Barr, and McDonnell (1988), noted that information technology had the

capability of enabling business performance, creating growth, and substantially

improving overall production. As Bowen (1986) points out, these types of improvements

in business capability are retarded due to end users’ reluctance to accept new

technologies or use new systems.

 47

www.manaraa.com

Information systems research has struggled with measuring user acceptance of

technology. Many individual studies have focused on certain variables and traits, but

have failed to produce an overall set of metrics that can accurately correlate to system,

practice, or process use (DeSanctis, 1983). This resulted in the need for an industrially

recognized and theoretical measurement for the adoption of technology practices (Davis,

1989).

Beyond the theoretical aspects of an improved metric for technology adoption and

use, a more accurate metric for predicting the use of a process, practice, or particular

technology has significant practical value (Davis, 1989). Information technology

professionals as well as manufacturers and vendors stand to gain from empirical

assessments of specific technologies. In the past, these measures were simply not

available or were provided from user opinion surveys that were highly subjective (Klein

& Beck, 1987). With the use of subject measurements, questions of accuracy and

repeatable value could constantly be raised (Shneiderman, 1987). Technology managers

who base decisions upon these types of un-validated and non-empirical metrics are at risk

of making misinformed decisions concerning the usefulness of a new system or process

(Davis, 1985, 1989).

A Basic Understanding of The Technology Acceptance Model

The goal of The Technology Acceptance Model is to produce better measures for

predicting the use of technology systems and processes (Davis, 1985, 1989). Davis first

proposed the use of two theoretical constructs to predict technology adoption in his

dissertation on how to test new end user systems. His study focused on what caused

people to adopt or ignore various technology processes or systems. He found that two

 48

www.manaraa.com

variables were important to this metric. People will accept or adopt a process or system if

they believe it will assist them in their job or will improve their chances of achieving a

goal. Davis referred to this as perceived usefulness (1989). Even if users believe that a

process will be beneficial, they must also believe that it will be free from difficulty or

effort and easy to use. Davis referred to this as perceived ease of use (1989).

Davis constructed a survey that collected data in three clusters for each of the two

variables. For perceived usefulness, the criteria of job effectiveness, time

savings/productivity, and relative importance to the job were measured in a series of

questions. For perceived ease of use, the criteria of physical effort, mental effort, and the

ease to which the system or process could be learned was measured in another series of

questions (Davis, 1989). Davis found that the scales resulting from his study produced

excellent psychometric results and validity was heavily supported by the multi-trait

method. Perceived ease of use and perceived usefulness were highly correlated to

indications of strong system acceptance and predictive use (Davis, 1989). With Davis’

initial results in 1985 and refined results in 1989, there was a strong call for additional

research and measures within various areas of information technology (Anderson &

Olsen, 1985; Gould & Lewis, 1985; Johansen & Baker, 1984).

Additional Literature and Applications of The Technology Acceptance Model

Like the TRA and the TpB, the TAM was constructed to measure and predict

behavior in the form of acceptance and use of particular processes and/or system

(Rawstorne, Jayasuriya, & Caputi, 2000). These models not only describe intention and

behavior but also identify the motivators behind intention and behavior especially when

 49

www.manaraa.com

the purpose is for prediction (Sutton, 1998). It is important to consider issues that might

arise in general measurements of behavior and intention.

Understanding Problems Associated with General Measures of Behavior and Intention

Rawstorne et al. (2000) indicate that there are two significant problems when

attempting to measure intention and behavior at the same time. The first issue explains

that when subjects complete surveys, which measure intention and behavior together,

there are forces that drive a strong correlation between these two elements. People

attempt to avoid psychological discomfort that comes when there is a discrepancy

between what a person intends to do versus what he or she actually does (Bem, 1967).

The second problem involved with the measurement of intention and behavior

together is that it may not be an accurate test of the model’s ability to predict future

behavior. Instead, the mix of measured intention and behavior will tend only to highlight

present behavior (Rawstorne et al., 2000). Ajzen and Fishbein (1980) suggest that the

time interval between measures of intention and measures of behavior are somewhat

measures of greater accuracy of future behavior and provide predictions that are more

astute. This may be true as unplanned factors or events may interrupt the intention-

behavior relationship during that interval, causing added inaccuracies and error in the

measurements. Karahanna (1993) suggests that there are too many dependent variables to

determine what valid relationships exist and to what extent error enters the measurement

between intention and behavior. Additional research, particularly longitudinal research,

appears to be necessary in considering general measures of intention and behavior in

models of prediction of future action.

 50

www.manaraa.com

Comparing the Theory of Planned Behavior and The Technology Acceptance Model

Rawstorne et al. (2000) set out to compare the theory of planned behavior and the

technology acceptance model through a series of three different behaviors. Their study

was designed to determine if behaviors could be predicted within each model, as well as

what amount of accuracy could be measured when both models were compared. The

study found that the TpB was only able to predict accurately one behavior of the three. A

coefficient of planned behavior dominated the relationship between intention and

behavior. Perceived usefulness was not mediated in the relationship between perceived

ease of use and intention and there were no direct effects on the variables for behavior by

the mediating effects of intention (Rawstorne et al.

This study found that the TAM was accurately able to predict two of the three

behaviors with perceived usefulness partially mediating the interchange between

intention and perceived ease of use. The failure to predict one of the three behaviors may

have been caused by the formation of intention. Davis (1985) indicated that in some

occasions, the intention to use a process or technology may require an amount of time in

which to form an intention, since some or even many systems require time to learn them

and to form an intention to use (or not use) once a workable understanding is achieved. If

this is applied to the Rawstorne et al. (2000) study, there is significant evidence that the

TAM surpassed the TpB in the prediction of technology processes or systems use.

A Review of The Technology Acceptance Model’s Acceptance

Burton-Jones and Hubona (2005) indicates that The Technology Acceptance

Model has emerged as one of the more popular and useful theories in predicting the usage

of technology processes and systems. In this 2005 study, the authors found that individual

differences were crucial in considering further predictability and accuracy of the TAM.

 51

www.manaraa.com

Zmud (1979) agreed with this assertion and demonstrated that the TAM’s belief

framework only partially mediates the effects of individual differences and heightens the

results of usage when a consideration of external variables is made. In a review of

contemporary TAM usage, Venkatesh and Davis (2000) found that the TAM was 40%

more accurate in predicting usage intentions and about 30% more accurate in predicting

usage behavior when external variables were considered (Meister & Compeau, 2002).

Theses authors noted that this is higher than other current models, but admit that a richer

experience is still needed. Critics of these percentages indicate that accuracy of the model

is still marginal and more research is required before the model has substantive empirical

value (Legris, Ingham, & Collerette, 2003; Plouffe, Hulland, & Vandenbosch, 2001).

To facilitate a greater understanding of what additional characteristics would

increase the accuracy of the TAM, Burton-Jones and Hubona (2005), selected three

individual criteria: (a) Educational level, (b) Seniority, and (c) Age. Agarwal and Prasad

(1999) predicted that these same criteria would directly affect the perceived usefulness

and perceived ease of use. Burton-Jones and Hubona (2005) expected only a partial

mediating effect on predictive usage. Their results indicated that the above additional

criteria did directly affect usage in addition to the affects of perceived usefulness and

perceived ease of use.

Burton-Jones and Hubona’s (2005) final conclusions indicated that the TAM,

albeit a widely used and respected tool for predicting technology adoption and usage, was

lacking in accuracy due to missing criteria and specific external variables that directly

affect usage measures. The authors proposed that researchers and practitioners use more

robust acceptance tools to improve usage prediction. They also proposed that users’

 52

www.manaraa.com

individual differences must be taken into account in whatever model that is applied; and

that for more accurate results organizational, social and belief-factors must be included.

Over 200 studies have involved the use of The Technology Acceptance Model as

the theoretical framework for the study (Yousafzai, Foxall, & Pallister, 2007). What

many of these studies have in common are the various positions and adaptations their

authors have found in the use of the TAM. In some cases, the TAM is a basis on which to

highlight their focused study or subject of investigation (Yousafzai et al., 2007). In other

cases, they use the TAM as a starting point in which to expand or extend its theoretical

elements with new, more relevant elements (Goodhue, 2007). Yet in others, the TAM is

used as a fulcrum of theoretical debate as to the applicability, validity, or elemental

reliability of its empirical and psychological components altogether (Benbasat & Barki,

2007).

Examples of The Technology Acceptance Model Applied

McCloskey (2004) found that the elemental aspects of the TAM, perceived ease

of use and perceived usefulness, were integral components of electronic commerce. The

two components provided a conduit for determining predictable usage. Usefulness was

demonstrated through the predictable engagement of electronic commerce media. Ease of

use was demonstrated through the measurement of whether a consumer would engage in

online commerce because it was easy to use. McCloskey extended her study in 2006 to

include the value of trust by consumers when making electronic commerce decisions.

Trust was found to extend the impact of ease of use and usefulness in electronic

commerce.

 53

www.manaraa.com

Almutairi (2007) applied the TAM to attempt to predict the acceptance of

information services within the Kingdom of Kuwait’s governmental organizations. The

study found that a relationship existed between ease of use and usefulness. It found there

were too many external affects of culture, Arabic organizational structure, and types of

information system usage that did not support the use of the TAM. A closer review of

this study indicates that the measures of data applied to the TAM were not intention

oriented but rather goal oriented. Davis (1985, 1989) and Venkatesh & Davis (2000)

noted that the applicability of the TAM was questionable in circumstances where

respondents had already begun to implement a process or practice. Their intentions had

given way to goal orientation, those goals being to see the practice or process

implemented. The TAM does not apply well in these circumstances because the

perception and the motivating attitude are not constructed to predict, but rather to

illuminate an already existing condition (Venkatesh & Davis, 2000).

Lee, Fiore, and Kim (2006) were able to use the TAM to explain the effects of

image interactive technologies on attitude and behavioral intention toward online

retailers. Like McCloskey, they added or extended the TAM to include perceived

enjoyment. Klopping and McKinney (2004) also applied the TAM to online commerce.

What they found was that ease of use was directly linked to the intention to shop online

and make actual purchases. There appeared to be no direct link to usefulness. Their

research indicated that another model, the Technology Task Fit (TTF) was a valuable

addition to the TAM when analyzing and predicting online shopping actions.

Experience was shown to provide an increased valuation in perceived usefulness

when applied to predictability and the intentions regarding application development

 54

www.manaraa.com

outsourcing (Benamati & Rajkumar, 2002). In the process of the research already

conducted there is evidence that indicates that certain relationships, as well as the

external environment, were additions to perceived usefulness and perceived ease of use in

determining the use of outsourcing. The external environment including cultural

affectations were found to influence the applicability of the TAM in Veiga, Floyd, and

Dechant’s 2001 study of culture on IT acceptance and engagement. Like Benamati and

Rajkumar, Veiga et al. (2002) noted that not only external influences were relevant and

additional to the concept of perceived ease of use and usefulness, but that specific

cultural and cross-cultural aspects must be taken into account when considering

acceptance and predictability of use. There is a strong relationship between the external

influences of culture on perceived ease of use and usefulness (possibly more relevance

issues). Scope is a natural coefficient in any discussion that includes a study area meeting

cross-cultural parameters.

Savitskie, Royne, Persinger, Grunhagen, and Witte (2007) found similarly that

international settings and cultural differences caused a lack of validation and perceived

usefulness when the TAM was applied. Their study is the first to note the phenomenon of

technology use and/or the engagement of computing practices or processes using the

TAM as a possible theoretical construct (Stylianou & Jackson, 2007). Other studies,

including Veiga et al. (2001), have solidly documented the effect of culture and cross-

cultural conditions on the TAM’s ability to predict usage. Both of the studies mentioned

above do not treat intention clearly nor do they completely define how international

pressures could affect perceived ease of use and perceived usefulness. This is the

confusion between intention and goal orientation, or what can be predicted versus an

 55

www.manaraa.com

explanation of what has already happened. In the case of the latter, it is a given that the

TAM is clearly inaccurate in determining predictability for something that already exists.

Criticisms of the TAM appear to gravitate toward an observed misuse of the TAM

variables and the incorrect outcomes. There are numerous demonstrations of TAM

applicability to various technologies as well as its ability to work with other theories of

predictive analysis. Gong, Xu, & Yu (2004) noted that the TAM clearly provided a solid

framework for measuring resistance to IT in an educational setting. Their study also

engaged the help of the Social Cognitive Theory (SCT) that added additional

considerations of how people develop knowledge and retain it. This, together with the

perceived ease of use and usefulness of IT computing capability allowed the study to

determine the influences of teacher’s technology acceptance and follow-on behavior. The

TAM was successfully applied to various medical and health-care situations. Hu, Chau,

Sheng, & Tam (1999), applied the TAM to a study of physicians’ acceptance of

technology that empowered telemedicine in health-care. Perceived ease of use was not

necessarily found to be a strong indicator of attitude or intention. Perceived usefulness

was a strong indicator of both attitude and intention.

The TAM’s success in predicting behaviors from attitudes and intentions is well

documented in business and technology applications. Analysis of intranet use within

organizations was successfully aided by the TAM (Horton, Buck, Waterson, & Clegg,

2001). Analysis of the use of specific financial services within a retail environment was

successfully supported by the TAM (McKechnie, Winklhofer, & Ennew, 2006). The

acceptability and use of computer-based training was successfully analyzed through the

TAM framework (Schneberger, Amoroso, & Durfee, 2007). The TAM was also found to

 56

www.manaraa.com

be a useful product management tool in the overall research of mobile commerce

(Snowden, Spafford, Michaelides, & Hopkins, 2006), and the ability to trust mobile or

electronic commerce from a users usage perspective (Dasgupta, Granger, & McGarry,

2002). The use of the TAM for business and technology acceptance challenges has a

strong record of successful application. Many researchers feel that the TAM requires

modifications to its basic theoretical constructs. Even though the TAM has been paired

with various other theories for increased and more robust meta-analysis, some researchers

feel that the TAM must be altered to make way for new revelations in predictive analysis.

Modifying The Technology Acceptance Model

Chau (1996) indicated that perceived usefulness was a more complex component

than originally applied by Davis. He believed that usefulness had near-term and long-

term aspects that affected the predictive results substantially and called for further

research into a modified model of the TAM. Davis revised the TAM in 1989, with it later

being labeled TAM 2 (Venkatesh & Davis, 2000). Szajna (1996) reviewed the changes

and felt that even modifications to the TAM by the TAM creator may not have been

needed. Szajna did concede that the introduction of experience into the TAM model did

enhance its prediction capability. As indicated above, the notion of acceptance from

intentions and behaviors predicted from attitudes is psychologically based. Schwarz and

Chin (2007) concluded that when considering alternative IT technologies, it was

important to have other psychological methods to determine alternative IT acceptance.

Schwarz and Chin were able to identify six additional psychological methods of

acceptance. Although they do not attempt or call for a modification of the TAM, they do

 57

www.manaraa.com

suggest that other methods either singularly or in concert with the TAM are more

effective in determining psychological acceptance.

Rigopoulos and Askounis (2007) developed a modified TAM to apply to IT based

banking services. Their findings indicated that when the original TAM is specifically

modified to the study, its relevance and accuracy increase. Yu, Liu, and Yao (2003)

modified the TAM extensively by adding additional variables to include perceived targets

differences, perceived complexity, and perceived social influences. They noted that the

acceptance of the technology in question was more accurately defined using additional

variable traits. Similarly, McCoy, Galletta, and King (2007) found that the original TAM

was relevant for U.S. application, but did not pass rigorous testing in a multi-cultural

surrounding. They suggested that aspects such as low uncertainty avoidance, high

masculinity, and high collectivism counter the effects of perceived ease of use and

usefulness. They did not attempt a modified or re-engineered TAM, but rather suggested

that when applying the TAM in studies across more than 20 countries other than the U.S.,

caution should be applied (McCoy et al., 2007).

One of the most significant meta-analysis of the TAM is the two-part study by

Yousafzai, Foxall, and Pallister (2007). Their attempt at TAM modification was through

a qualitative gap analysis of over 145 studies on the TAM. Their aim was not only a gap

analysis but also a TAM unification proposal. In part two of their study, they applied a

quantitative analysis of 569 study results from over 95 TAM research projects. The

empirical investigation focused on self-reporting usage and its effect on behavior. Their

study raised several questions about the possible exclusion of attitude from the TAM

when technology usage behavior is actually mandatory instead of voluntary.

 58

www.manaraa.com

Additionally, they asked if self-reporting measurements on intentions was valuable

instead of employing actual usage measures (Yousafzai et al., 2007). The outcome for

them is essential to a unified, and modified, perception of the TAM.

Venkatesh and Davis (2000) using data from longitudinal research addressed the

issues of mandatory usage versus voluntary usage through a model that was modified to

include social influences such as subjective norm, voluntariness, job relevance, and

output quality. This study found that when these influences were added to perceived

usefulness and perceived ease of use and measured during periodic milestones of activity,

there was improved adoption behavior over the TAM model without the added

influences. It is clear that previous additions and modifications to the TAM supported or

at least motivated that particular research direction. The use of longitudinal measures was

the first to indicate that there was empirical evidence that supported the use of actually

modifying the TAM to acquire more accurate behavior/adoption predictions. This

conclusion, and the subsequent conclusions of other researchers support as well as lead to

the conclusions of Venkatesh and Davis (2000). They support the addition of quality-

metric influences of efficiency and effectiveness on perceived ease of use and usefulness

(see Figure 3).

Criticisms of The Technology Acceptance Model

A literature review of the TAM must include contributions of the critics,

comparisons to those that find relevance in the model, and those that find modifications

to improve the model’s accuracy, application, and relevance. Benbasat and Barki (2007)

presented a qualitative critique on the TAM’s basic tenets as well as studies and

researchers that have attempted to modify the TAM to adapt it to changing IT

 59

www.manaraa.com

environments. They indicated that the TAM was an illusion of progress and diverted

attention away from important research topics. They found the work by other researchers

to change or modify the TAM to be a cause of confusion as to the actual version of the

TAM that should be employed (Benbasat & Barki, 2007). Goodhue (2007) echoes their

concerns about the TAM’s obfuscation role in adoption research. His review indicated

that the TAM assumes that more usage will result in a more accurate behavioral

prediction, and that increased usage will result ultimately in higher performance and

higher adoption (Goodhue, 2007).

There is compelling logic to Benbasat and Barki’s (2007) as well as Goodhue’s

(2007) arguments, but there is little empirical evidence that there is chaos or widespread

obfuscation, as they want one to believe. Benbasat and Barki failed to unhinge the

foundations of psychological interaction embedded in the Theory of Reasoned Action

that is basic to the TAM. They also failed to counter the findings of progressive

behavioral predictions contributed by the Theory of Planned Behavior. Essentially, they

employed a qualitative argument to uphold an empirical critical position. They also

assumed that the variations on the TAM are chaotic and/or are at the center of confusion

within the environment. This is not supported by other researchers and is not even

moderately mentioned in the literature (Zhang, Prybutok, & Koh, 2006). Their

assumption that variation is somehow chaotic challenges the dynamism of information

technology and the constant movements and changes general information technology

sciences have and do undergo. The scope of any research could vary with the subject and

it could be said that a requirement of an essential aspect of a valid theory is that it has the

growth capability to meet the dynamic movement of the environment it is studying.

 60

www.manaraa.com

Goodhue’s (2007) critique of the TAM indicates it assumes more usage is better.

He states that the higher the usage the higher the performance of the system, and the

higher the systems’ general acceptability. This causation is not empirically fed through

the psychological process-bound movement of intention to attitude to behavior, but rather

an unintentional outcome of two independent variables coming together in a random

result. Actually usage is not necessarily a dependant variable. Predictive use (usefulness)

may have influences outside of perceived ease of use depending on the environment

(Yousafzai et al., 2007). The previous highlighted studies demonstrated this. Applying

influences that further focus perceived ease of use and perceived usefulness do not

attempt to engage quantity usage, but rather create deliberate shifts in focus that are

consummate with its surroundings (known as the subjective norm).

Other criticisms of the TAM come from the post-positivistic movement. Silva

(2007) takes this perspective and reviews the criteria of the TAM using an empirical

approach. Using several (positivistic) theoretical models, Silva attempts to test the

connection between intention and action and to apply the criteria of normal science to the

TAM. Lastly, Silva notes that the TAM, as a science, is advancing. A science must

advance as a part of its validation criteria and not decline. Similar to Benbasat and Barki,

Silva points out that the apparent growth is a combination of confusion and knowledge

accumulation, which may not be scientific at all. This position seems to state the criteria

of science then proceeds to argue why fulfilling the criteria is not scientific. It is apparent

from the literature that the TAM’s ability to draw variations and specific subject

influences causes immediate questions for quantitative researchers. Ma and Liu (2004)

take a similar position. They employ statistical significance, direction, and magnitude as

 61

www.manaraa.com

critical criteria. Their study, unlike Silva, measured the relationships between usefulness

and acceptance as well as usefulness and ease of use. They did find that there is only a

weak connection between ease of use and acceptance (Ma & Liu, 2004). Silva also

questioned this connection (2007) but found it an emotional (non-qualitative) connection

and not an empirically sound one.

A Unified Technology Acceptance Model

The review of the literature so far yielded several aspects of the TAM, one of

which indicates that a unification of variables is necessary for some form of application

or practitioner consistency. Although most authors are unclear as to why consistency is

important (other than for itself), it nevertheless is a criterion in evaluating the various

styles of TAM employment. The call for unification is found specifically in many of the

modified TAM proposals. One of the most exhaustive works in unifying user acceptance

of technology is a model developed by Venkatesh, Morris, Davis, & Davis (2003). This

model combined eight acceptance determinant theories and applied four criteria across

them to create a unified set of theories. These criteria include: (a) A review of current

literature and identification of support for the theory’s relevance and general acceptance

in the industry, (b) An empirical comparison of each theory along with supporting

material, (c) The formulation of a model that incorporates the successful elements of each

of the various models, and (d) Validation of the unified model through empirical means.

The combined result of this work was labeled the Unified Theory of Acceptance

and Use of Technology (UTAUT). The purpose of the UTAUT is to give IT managers

that need to evaluate the implementation of new technologies an understanding of the

drivers of acceptance in order to prepare environments and user groups for the adoption

 62

www.manaraa.com

of the new technologies (Venkatesh et al., 2003). This theory is based on the concept that

in order for technologies to increase productivity they must be used and accepted by a

community of users within the organization (Hu et al., 1999). Researchers are faced with

many models that meet various criteria, but which lack other requirements. The UTAUT

offers the researcher the ability to meet a majority if not all of the generally accepted

relevant criteria in one unified model of measuring and predicting acceptance of a

technology or process (see Figure 2).

The UTAUT was the result of longitudinal studies conducted at four locations

using individuals introduced to new technologies at their work site. Great care was taken

to create a homogeneous environment between the locations, the organizations, the

technologies employed and the background of the each individual involved (Venkatesh et

al., 2003). A series of surveys were conducted in both voluntary and mandatory settings

at various points of the technology implementation. Aspects of the eight various

acceptance models were represented in the survey questions. The result indicated that the

UTAUT provided a filtered view of what determines intention and behavior and how

these evolve over a period. Moderating influences seen in many of the individual models

entered into the values of the unified model. Aspects such as age and gender appeared to

present unexamined interactions and results (Venkatesh & Morris, 2000). Other

determinant factors only show that a complex series of moderating influences continue to

operate around an increasingly dynamic picture of what individual perceptions of

intentions and behaviors toward acceptance of technology might have. Many of the

models, both individually and within this unified construct, predict intention and usage.

Specific confirmation of usage or even motivations of individual acceptance remain weak

 63

www.manaraa.com

or unsubstantiated. Technology creators may continue to struggle under an incomplete

picture of what is acceptable and to what level of acceptance certain technologies may be

judged (Venkatesh & Davis, 2000).

In comparison to other, individual models, the UTAUT has not received a

significant amount of acceptance or use in the field or within the existing literature.

Despite the call for a more unified technology acceptance model, the result of a hyper-

consolidated model was highly complex, and for most practitioners, unusable. With over

64 cross-validation variables, the UTAUT is less likely to be used by a technology

manager at an organization attempting to integrate new technology processes, tools, or

practices. It is a powerful research tool with strategic value in plotting expectancy, usage,

and behavior through predictive analysis on a variety of internal and external influences.

Venkatesh et al. (2003), admits that with the UTAUT the practical limit to explaining

individual technology acceptance and usage decisions in organizations is at its limit. If

actual employment of the model is an indication of industry acceptance, the lack of

substantial literature showing the use or employment of the UTAUT speaks for itself.

The Paired Programming Practice

Paired programming is one of the most significant practices in the Extreme

Programming methodology because of its proposed ability to increase product creativity,

increase customer satisfaction through improved communication, and increase technical

software coding quality (Beck, 1999). It has also become one of the most popular topics

of research within the Agile family of methodologies (Abrahamsson, Warsta, Siponen, &

Ronkainen, 2003). Nosek (1998) reported the first scientific study of paired

programming. There are indications from various literature sources that studies prior to

 64

www.manaraa.com

this were conducted and their results popularized in several publications, but without

empirical evidence or peer-review. Studies in paired programming escalated in 2000 and

remained actively studied producing contributions up to the present (see Figure 6).

Understanding Paired Programming

Hulkko & Abrahamsson (2005) organized studies in paired programming into

intuitive categories. These include case studies, experiments, surveys and experience

reports. Another area of recent interest is paired programming in (computer) education.

For the purpose of this study, the above categories of Hulkko and Abrahamsson will

frame the following literature review. The research problem of this study highlights the

issues of paired programming as compared to single programming results. Supporters

have claimed benefits of less scheduling time and reduced communication logistics along

with higher productivity and shorter release times (Williams, 2000). Yet there are counter

reports on paired programming with less than optimum revelations. The following review

will reveal the various camps that have appeared and the evidence associated with each of

their positions.

Case studies on Paired Programming

Case studies in paired programming introduce an informative aspect of the

practice that discerns its performance in actual software project settings, as well as

demonstrates the impact it has on software quality (Muller, 2003). Case study literature

suggests that the major subject of paired programming studies focus around

maintainability and reliability (Muller, 2003; Williams, Kessler, Cunningham, and

Jeffries, 2000; Wood & Kleb, 2003). Gallis, Arisholm, & Dybå (2003) indicated that

beyond the research of how paired programming is beneficial, it is important to evaluate

 65

www.manaraa.com

how paired programming is easy to use and useful. This is accomplished in case studies

where paired programming has been observed in use and where results are readily

apparent. Williams and Kessler (2003) note that the benefit of paired programming is best

observed when applied to particular tasks or activities. Additionally, Hulkko and

Abrahamsson (2005) state that various case studies have observed the suitability of paired

programming for only specific tasks under certain conditions. Hulkko and Abrahamsson

point out that whereas these observations indicate a positive direction, the general nature,

and relative importance to the field continues to indicate and produce questionable

metrics.

Testing and Paired Programming Case Studies

The Extreme Programming methodology and other Agile-type methodologies

promote testing-first practices. Talby, Hazzan, Dubinsky, and Keren (2006), shifted their

study from paired programming being a programmer-oriented focus, to an architectural

element that makes up the internal construction of a large project. In a case study of a

large scale, critical software project for the Israeli Air Force, Talby et al. (2006), found

paired programming to be a modular component to the planning and execution of large-

scale projects. Turk, France, and Rumpe (2005) agree, but from the position that Agile

based practices such as paired programming are not just for anecdotal applications or

short-term experiences. Paired programming supports methodical test-driven

programming and design. They raise the subject that although applicable, paired

programming and other Agile methodologies that support testing-first practices must be

applied differently depending on the scope and critical nature of the project. They also

 66

www.manaraa.com

indicate that other Extreme Programming practices should be given more credence in

large as well as small project planning.

Crispin (2006) states that test-driven programming or design is essentially not a

technique for testing but rather an engineering design technique. The practice is

integrated into the pair activities so that for each function point the pair creates, they first

must write a function or unit test to complement it. Writing unit tests prior to coding a

function requires the pair to understand the components of that function as well as its

outcome as it relates to the overall program. The unit test is combined with other unit

tests to provide a test-story prior to declaring that iteration’s code executable (Mugridge,

2008).

Case Studies Considering the Role Components of a Programming Pair

In a pair of case studies to review the components of a programming pairs, Chong

and Hurlbutt (2007) found that terminology was not created prior to the practice, but after

it. The terms driver and navigator were not used in Beck’s seminal work (2000) on

paired programming practices, but the processes proposed by him relied on the

programming pairs working as a team within a larger team. Williams and Kessler (2003)

first use the terms to identify the driver and the navigator. The driver works at the

keyboard writing the code or design. The navigator thinks strategically, observing the

driver’s code and thinking of the next several lines to encode.

Few studies have really delved into the inner workings between the navigator and

the driver. To some extent, this would seem counter to Beck’s original concept of what

the pair was doing; opting for more creative freedom than structural role definitions.

Chaparro, Yuksel, Romero, and Bryant (2005), indicated that the role of navigator and

 67

www.manaraa.com

driver were difficult to define, at least in studies where student programmers were

observed in paired programming settings. They did theorize that as programmers matured

in their skills they would gravitate more toward structured roles. Bryant (2004)

researched the working patterns of programmer pairs and found that student programmers

tended to work outside of most defined roles such as navigator and driver. The pairs

tended to switch somewhat chaotically between roles. Yet, when Bryant studied more

mature or professional pairs, what she found was almost similar behavior with more order

in their activities. This led her to conclude that programmers in general seem to be role

independent, even though as a programmer matures it is possible for the roles to become

seamless through experience and expertise (Bryant, 2005).

Williams and Kessler (2003) observed that variation in pair make-up between

novice and experienced programmers yielded more effective and efficient results.

Novices that were paired with novices became frustrated early and were ineffective.

Experienced programmers paired with other experienced programmers became bored or

worked independently despite pair assignment. Balancing experience within a pair

seemed to yield the greater productivity and quality. Sfetsos, Stamelos, Angelis, and

Deligiannis (2006), found that the productivity of a programming pair was related to the

amount of communication between the pair, based on their personalities. Padberg and

Müller (2004) observed a connection between a programmers comfort level and the

resulting pair’s productivity. They failed to actually define what comfort level actually

meant or substantiate a metrics for what constitutes comfort within a pair.

Chong and Hurlbutt (2007) sum up the results of these various case studies on

pair roles through the results on their own observations. They indicate that in practice the

 68

www.manaraa.com

roles within a pair are less structured than the literature may indicate or wish. The natural

pattern of interaction takes over and both involve themselves in the actual division of

labor (Ho, Raha, Gehringer, & Williams, 2005). The pairs appeared to be the most

effective when they took on both the navigator and driver roles, switching the actual

control (keyboard) point as they progressed through the code. This indicates that these

roles are less of a structured assignment or position, but more of a general explanation of

the pair’s role at any one point in time; and are naturally fluid (Chong & Hurlbutt, 2007).

Clegg, Waterson, and Axtell (1996) noted that programmer groups are actually

intensive work-cells and themselves living organizations. They found the theory of the

current period to be unprepared to address this type of practice. What was necessary was

a detailed analysis that yielded cognitive explanations and organizational understanding.

Their studies on knowledge-intensive work organizations lay a socio-psychological basis

for collaborative software engineering (Clegg, 1994). Although there is no indication that

Beck (1999) was aware of their research in his seminal work on Extreme Programming

and specifically on the practice of pair programming, Clegg et al.’s (1996) initial theories

seem to set the stage for the practice of collaborative programming. This is evident in

Clegg et al.’s (1996) qualitative action research study with three specific cases. Each case

involved a large software project and a team of programmers. Several different

programming methodologies were used along with various structured tools. What they

found was that most software development managers and software teams were eager to

collaborate. In each case study, a socio-technical proposition was independently

determined, that is, the adoption of more coordinated efforts, explicit team processes, and

 69

www.manaraa.com

the use of “software development cells,” an idea borrowed from manufacturing (Clegg et

al., 1996, p. 247).

The result of Clegg et al.’s (1996) study was a fear that the software development

world would move toward several negative trends if socio-technical elements were not

considered. These trends include the growing use of the factory example as a process

example for software engineering, the use of highly structured computer aided software

engineering (CASE) tools for standardized work, and the fragmenting of productivity

processes and knowledge bases because of outsourcing (Clegg et al., 1996). The first fear

reduced the software engineering team to mechanic-like properties, disregarding the

scientific aspects of the work (problem solving versus mechanical iterative actions). The

second fear place a significant amount of trust and expectation on the tool rather than the

user of the tool. This fragmented knowledge, expertise, and understanding for the use of

expensive tools and highly structured processes. The third fear recognized that the

knowledge and intellectual property were lost when outsourcing was utilized in sort of a

plug-and-play method (Clegg et al., 1996). The case study of Clegg et al. (1996) provides

a fertile basis on which to ground the need for collaborative software engineering in the

form of paired programming. Whether the founders of the pair programming practice

considered it, is not as important as the groundwork, which has provided an

understanding of the need for such a practice in software engineering maturity.

Experiments in Paired Programming

Since 2000, there have been many pronouncements in favor of paired

programming versus individual programming. Various experiments within the last 10

years provide empirical evidence that this is the case. There are also studies that seem

 70

www.manaraa.com

opposed to these findings or at least moderate the benefits significantly. This section

discusses the experimentation and empirical results related to the value of paired

programming and the ongoing literary and research debate over the evidence.

The first formal studies of paired programming can be found in Flor and

Hutchins’ (1991) study on distributed cognition among software development teams.

This is where they first introduced the concept of paired programming as a way to

distribute task knowledge and divide task productivity. This work was qualitative in

nature and it was not until 1998 that Flor followed up on their initial study with a

research project to measure and promote side-by-side software development or paired

programming (Flor, 1998). Flor returned to the subject of paired programming to

emphasize the empirical evidence for the use of pairs in software development. He

recognized that businesses are now under severe economic pressure to employ distributed

software groups in various locations and/or even around the globe. Returning to his

previous studies, he restates the elements of successful pairing and applies the limitations

of distance collaboration to the situation (Flor, 2006). The results of his review reveal the

need for visual, manual, and audio links between distributed locations, but essentially the

tenets of pair programming continue to remain the same, with the same expectation of

success (Carmel & Agarwal, 2001).

Despite Flor and Hutchin’s (1991) initial analysis on pair programming, many

theorists cite Nosek’s (1998) initial empirical study of collaborative programming as the

first true empirical work specifically on the practice. In his study, he hypothesized that

programmers working in pairs would provide more and better code than programmers

working individually, that pairs will take less time on a problem than an individual

 71

www.manaraa.com

working alone, and that pairs will express higher confidence levels in their work (Nosek,

1998). Although Nosek’s study was small and somewhat limited, it provided the first in a

series of experiments and empirical studies that demonstrated pair programming benefits.

Nosek also provided questions with his findings. These included questions that asked if

two average programmers teamed up, would this provide enough productivity that would

not be possible if attempted separately. He also asked if companies could use

collaborative programming to shorten development and product delivery time. Finally, he

asked if collaborative programming provided a competitive edge for companies that use it

(Nosek, 1998). These and other similar questions are proposed throughout the literature.

Many have attempted to answer these questions through experiments, surveys, and

experience reports.

Visaggio (2005) attempted an empirical assessment to help address Nosek’s

questions. The results, not unlike previous findings, were clearly found in three areas.

First, it appears that paired programming improved developer productivity as compared

to individual programming. Second, paired programming supported significant

knowledge transfer between the members of the pair, especially when both were of equal

educational backgrounds. Lastly, attempting to distribute the pair over geographical

distances seriously deteriorated productive results if collaboration and communication

tools were not solidly in place (Canfora, Cimitile, DiLucca, & Visaggio, 2006: Visaggio,

2005).

The first experimental work on paired programming was conducted in an

academic setting, the results of which were not published in peer-reviewed forums. The

experience was communicated through various works. Almost immediately, researchers

 72

www.manaraa.com

set out to replicate and renew the research to further ends. Williams (1999), who took

part in some of the original experiments as a graduate student at the University of Utah,

continued to propose more extensive testing on the use, practice, and effects of paired

programming. She followed up the 1999 experiment experience with a series of

experiments between the years of 2001 and 2002 at North Carolina State University.

Empirical data was collected in several regular and longitudinal studies on the effects of

paired programming on productivity and output (Williams, Wiebe, Yang, Ferzli, &

Miller, 2002).

A review and summary of experiments to date was made by Mendes, Al-Fakhri,

and Luxton-Reilly (2006). Although these experiments were clearly more structured and

more populated, (over 100 students participated) than the original study, they still kept

within the academic arena and produced questionable results for applications in business

and commercial enterprises. Additionally, their findings were a mix of empirical metrics

and qualitative measures based on opinion surveys of the students participating in the

experiment. The results matched other similar studies in that students that employed

paired programming successfully completed the course at a much higher rate than other

students that followed individual programming methods (Braught, Eby, & Wahls, 2008).

What remained to be accomplished from this and other studies was a follow-on

investigation on how the successful students performed in subsequent programming

courses when either working in pairs or working individually (Mendes et al., 2006).

Measuring the Benefits of Paired Programming. The focus of the research in this

study is on understanding the attitudes and intentions of software development managers

to measure the perceived ease of use and perceived usefulness of paired programming in

 73

www.manaraa.com

order to predict the practice in the future. The reason for this study is the contradiction in

measures for the use of paired programming over the last nine years. There is also a grass

roots concern in many businesses that they are spending too much for software

development when observing two people work at one workstation (Flor, 2006).

One of the proposed benefits of paired programming is a shorter time to

completion or increased velocity. This is accomplished through improved problem

solving activities of a pair of programmers rather than an individual programmer

(Williams, 2000). There is also less administrative and communication overhead because

the pair is already stitched together in a formal way. Williams, Kessler, Cunningham, and

Jeffries, (2000) found that in a 2000 experiment on pair programmer productivity, pairs

finished 40%-50% faster than did individual developers. Lui and Chan (2003) indicate

that there is only a 5% timesaving gained by pair programming. Müller (2003) found that

pairs could cut quality assurance and unit testing in half. Yet Nawrocki and

Wojciechowski (2001) reported that there are no added gains by employing paired

programming or the Extreme Programming methodology over individual programming

and a waterfall software engineering process. They found the paired programming

practice to be less productive than the practice of individual programming when

employing other forms of Agile or Extreme Programming methods. Over time, they

found that paired programming became more efficient than individual programming and

to some small extent, the practice proved more productive or effective over time

(Nawrocki and Wojciechowski, 2001). Humphrey, (1995) found that individual

programming, when applied in a group setting, was linear, that is, increased

incrementally and linearly as additional individuals were added. Nawrocki and

 74

www.manaraa.com

Wojciechowski (2001) found that paired programming efforts were not linear in relation

to the increased population of programmers working on the project.

Other contradictions about greater or lesser coding efficiencies and effectiveness

in paired programming exist throughout the literature. Gallis et al. (2003) indicated that

one of the reasons for this issue is that there are no consistent and/or agreed upon

frameworks for research for paired programming. Their research based on previous

paired programming metrics, current research on collaborative programming, and various

group research theories resulted in a framework that suggests a hierarchy foundation for

analyzing paired programming research. Review of the literature does not indicate

significant support for this foundation, but there is evidence to indicate that other

contributing authors desire a more disciplined approach.

Costs in relation to greater efforts and the ensuing expenditures are other methods

of measuring the benefits of paired programming. Williams and Kessler (2003) found

that whereas certain paired programming efforts might increase overall project costs, it is

worth the added expense in part due to the resulting software’s improved quality.

Measurable points of quality include the constant review of code lines by the navigator as

the director types in the code. It also includes continued defect review and prevention

with four eyes versus two scanning the code lines, and the pressure of the pair which

imposes a natural conformance to standard work and the courage to refactor (rebuild or

reconstruct code) when required (Beck, 1999). Wood and Kleb (2003) support Beck’s

position and indicate that through the paired interaction, coding standards are actually

tried and reconfirmed in the course of use. Gallis et al. (2003) indicates that stricter use of

 75

www.manaraa.com

coding standards will strengthen the software, provide for better readability by others,

and increase the accuracy and completeness of knowledge transfer between developers.

Actual output and productivity of the pairs as well as the work effort is central

within much of the literature and concern about paired programming by businesses

(Hulkko & Abrahamsson, 2005). It is also substantive to the research question of this

study and behind the assumption by many business managers that when using two

programmers for the same task, the effort spent and costs expended are doubled.

Williams (2001) notes the pairs expended only 15% more effort when doing a task than

their individual programmer counterparts. Ciolkowski & Schlemmer (2002) found a 10%

increase and Lui & Chan (2003) found a 21% increase. Additionally, Williams, Shukla,

and Antón (2004), noted the productivity impact of new members as pairs to a delayed

project and found that with paired programming, assimilation of the pair and increases in

productivity were greater with the pairs than if the team members worked individually.

Jensen (2003) reported a 127% increase in productivity by using paired

programming over individual programmers, measured over large and time-extensive

software projects. Yet as already noted above with Nawrocki and Wojciechowski (2001),

productivity was greater using individual programmers under the Extreme Programming

method. They did find that after a certain period, the productivity of the pairs increased

beyond the individual programmers. Williams et al., (2000) called the initial ramp-up of

expended work necessary for a pair to be significantly productive (beyond the value of an

individual programmer), pair jelling. This may also explain the phenomenon observed by

Nawrocki and Wojciechowski (2001).

 76

www.manaraa.com

Additional evidence and metrics can be found on the quality results of paired

programming through the findings of empirical studies. Shorter or reduced code length is

a manner of measure that indicates the code is more maintainable and easier for others to

read and manage (Cockburn & Williams, 2000; Wood & Kleb, 2003). Shorter or reduced

code length is also a general indicator of superior design and architecture. Sometimes

considered more efficient or tighter, short code length indicates a more quality

engineering effort borne of expertise and experience (Ciolkowski & Schlemmer, 2002;

Cockburn & Williams, 2001).

Associated with a quality consideration, but more specifically measured are defect

rates in code lines along with higher rates of initial acceptance test or test case segments

passed as a result of paired programming (Jensen, 2003; Tomayko, 2002; Williams,

2001). Overall quality ratings that combine a mixture of these metrics along with some

subjective elements such as readability, ease of change, executable speed, and intuitive

logic are combined to form a measure of quality that has a positive impact on the final

code product as a result of applying paired programming (Nilsson, 2003; Williams,

McDowell, Nagappan, Fernald, & Werner, 2003). All of these measures point to a

positive direction for the use of paired programming. Yet there remains no specific,

quantitative measure that fully indicates an unquestionable position. Part of the reason

lies in the measures themselves. Some are general; some are undefined or too subjective.

Others lack a standard methodology on which to rely (Chaffey, 1998). In some cases, the

cost benefits have been used to indicate quality or acceptability or as a justification for

further use of the practice (Hulkko & Abrahamsson, 2005). What can be concluded from

the literature to this point is that paired programming appears to have benefits that at least

 77

www.manaraa.com

are equal to or greater than the disadvantages. To what extent this is the case remains to

be proven through more quantitative measures and more substantive theoretical

frameworks in which to study ongoing results.

Paired Programming Studies

The Agile Methodology Movement proposes to create faster code that is more

desirable, through an iterative process that produces working results through the constant

interaction between the customer and the programming pair. Many times paired

programming is termed collaborative programming or iterative programming, depicting

its logical segmentation, yet independent executable capability. Nosek’s (1998) study

provided the first empirical evidence that paired programming was possibly more

efficient and more effective than traditional single programming methods. An experiment

at the University of Utah in 1999 further solidified the use of paired programming as a

viable practice that contributed to the effectiveness and efficiency of software coding

(Williams, 2000).

In 2003, Arisholm and Sjøberg replicated Nosek’s research and the experiment of

the original paired programming study. A total of 295 junior, intermediate, and senior

professional Java consultants (99 individuals and 98 pairs) from 29 international

consultancy companies in Norway, Sweden, and the UK were hired for one day to

participate in a controlled experiment on paired programming. The subjects used

professional Java tools to perform several change tasks on two alternative Java systems

with different degrees of complexity. The results of this experiment did not support the

hypothesis that paired programming in general reduces the time required to solve the

tasks correctly or increases the proportion of correct solutions (efficiency). On the other

 78

www.manaraa.com

hand, there was a significant 84 percent increase in effort measured to perform the tasks

correctly (effectiveness). On the more complex system, the paired programmers had a 48

percent increase in the proportion of correct solutions but no significant differences in the

time taken to solve the tasks correctly (effectiveness). For the simpler system, there was a

20 percent decrease in time taken (efficiency) but no significant differences in correctness

(see Table 2) (Arisholm & Sjøberg, 2003).

Table 2. Comparison of Individual and Paired Programmer Effort Expended in a Generic
Coding Problem

Programmer Category Individual Pair Difference

All (average) 73 135 84 %

Juniors Only 82 172 111 %

Intermediate Only 89 128 43 %

Senior Only 62 114 83 %

Note: Adapted from “A controlled experiment with professionals to evaluate the effect of
a delegated versus centralized control style on the maintainability of object-oriented
software,” by Arisholm, R. & Sjøberg, D. I. K. (2003), Technical Report 2003-6, Simula
Research Laboratory. Copyright 2007 by the IEEE Computer Society.

It appears that the moderating effect of system complexity depends on the

programmers’ expertise in the subject areas. The observed benefit of paired programming

for complex systems appears to be more useful when junior programmers are involved.

The observed benefit of paired programming for simple systems appears to be more easy

to use when performed by intermediate and senior programmers. Arisholm, Gallis, Dybå,

and Sjøberg, (2007) experiment proposed that the future benefits of paired programming

would exceed the results obtained in their experiment for larger, more complex tasks. It

 79

www.manaraa.com

was also noted that benefits would increase if paired programmers were given the chance

to work together over longer durations (Arisholm et al., 2007).

Perceived Ease of Use and Usefulness of Paired Programming

The experiment by Arisholm et al. (2007) indicated that there were variances

between efficiency of paired programming and the effectiveness of its application. Added

to these findings, there appears to be growing concerns by businesses about the cost of

software programming and the general inability of software development groups to

complete projects on time and within budget (The Standish Group, 2004). It is only

natural to think that two programmers sitting at one workstation is inefficient despite the

initial findings of Nosek’s (1998) and the University of Utah studies that indicated paired

programming was more efficient than single programming. The effectiveness of paired

programming continues to come under scrutiny as cost-conscious business leaders and

lean-driven product managers find it hard to believe that a pair is a more efficient

arrangement than a series of individual programmers working in a focused manner

(Nosek, 1998; Mendes, Al-Fakhri, & Luxton-Reilly, 2006; Williams, 2000).

Paired Programming Surveys

This segment of the literature review focuses on relevant survey studies in paired

programming and the Extreme Programming development processes. Some surveys have

been developed to uncover group perceptions of paired programming in use. Others have

been executed to determine if paired programming is considered useful and might be

used in the future (similar to the focus of this study). A preponderance of paired

programming survey studies focused on the educational benefits of preparing new

software development engineers. Some have targeted supporting functions to paired

 80

www.manaraa.com

programming and their importance in the overall process of software development. Only

a small body of knowledge was found within this realm of the study. Despite that, this is

an important segment of study if a complete review of paired programming literature is

desired.

Hanks (2006) surveyed students about the use of paired programming in their

training and study as well as in their assignments. The survey indicated strong agreement

on every sample taken supporting various aspects of paired programming. One of the

aspects not anticipated in the survey was that women were shown to have a more positive

attitude about paired programming as opposed to men. The statistical significance was

relatively small, but the trend was clear. This trend reflected similar findings by Werner,

Hanks and McDowell (2005) and Margolis and Fisher (2002) in a series of studies

dedicated to researching the affect of paired programming on female users/programmers.

Additionally it was found that students who were the most confident also found paired

programming more beneficial overall. This finding also matched other studies (of a non-

student nature) where programmers who were more confident in their software

engineering abilities also were more positive about the use of paired programming

(Thomas, Ratcliffe, & Robertson, 2003).

Experience Reports on Paired Programming

Experience reports are usually compilations of experiments, case studies, and

surveys brought together to propose or promote a particular topic or process. Various

experience reports exist in the body of knowledge for paired programming. The general

indication of the literature indicates that since 1999, there has been an increasing

empirical and structured approach to the study of Extreme Programming, particularly the

 81

www.manaraa.com

practice of paired programming. The growing efforts have matured the science of the

study in the last nine years. This segment represents samples of such research within the

area of paired programming (Cockburn & Williams, 2000).

Erdogmus and Williams (2003) produced a research work that brought together

various types of past research and surveys into their own study on the various economic

aspects of collaborative programming (including paired programming) and personal

software processes (individual programmer efforts). Their study yielded notable

differences between the performance of paired programming and individual

programming. The results of their experiments, past research, and surveys were used to

determine the economic feasibility of paired programming (Williams et al., 2000).

Cockburn and Williams (2001) noted that many reject paired programming

because they believe that software engineering costs will double with two programmers

working on the same task. If the practice cannot demonstrate economic feasibility then

most managers will not use it. They stated that businesses determine whether to adopt

certain practices based on bottom-line outcomes. These outcomes are modeled using net

present value (NPV) calculations and breakeven analysis (Levy, 1987). Erdogmus and

Williams’ (2003) findings demonstrated the economic value of paired programming as an

alternative to individual programming. In both value models, they noted that paired

programming produced superior economic results from other previous studies and

engineering literature. In particular, they found that the value of paired programming was

enhanced when development tasks were incrementally structured through frequent

releases, a long-standing engineering economic measure (Boehm, 1981). They also found

that paired programming value increased as defect rates dropped from 60% (at an

 82

www.manaraa.com

individual programming par) to 20% indicating a significant connection between paired

programming value and improvement in code quality (Erdogmus & Williams, 2003).

In an explanatory work on Extreme Programming and the use of paired

programming practices, Lindstrøm and Jeffries (2004), take a values based approach to

the comparison of present software development models. This report simply outlines the

various values, principles, and practices of five popular models: Capability Maturity

Model Integration (CMMI), Structured Analysis & Structured Design (SASD), Rational

Unified Process (RUP), Agile, and Extreme Programming (XP). Their findings show by

comparison that only Extreme Programming contains value based engineering structures,

principle based coding measures, and practices based task work. Further analyzed, the

paired programming practice is shown to provide better code and tests (practices), ability

to communicate and spread knowledge (values), and improve skills and professional

knowledge (principles) (Lindstrøm & Jeffries, 2004). Waguespack and Schiano (2004)

reflected this same thinking in their experienced based work on component architecture.

This is a different perception of software engineering, with a preference for component

building and integration rather than a linear process of engineering development. They

explore various component frameworks such as Active X, Corba, Microsoft DCOM,

Microsoft .NET, and enterprise Java and J2EE. With these components, they apply three

usability characteristics such as utility, capacity, and versatility. The results of their

comparison was that the iterative aspects of paired programming produced the best

results in all the architecture categories and provided the most output with the greatest

rapidity for the three usability characteristics above (Waguespack & Schiano, 2004).

 83

www.manaraa.com

Another important experience report in paired programming comes from a

detailed ethnographic study of the driver and navigator. Bryant, Romero, & duBoulay

(2005), focused on how tools are used in the paired programming cycle and when

combined with engineering dialogue, produces a simple but powerful management and

communication tool. This observational study took place in several business workplaces

with programmers working on real tasks and problems. What they found was a series of

cost-benefits due to the evolved roles. Whereas the roles did not always align specifically

to the paired programming rules, the collaborative setting and role orientation was

adequately followed with positive results (Heilberg, Puus, Salumaa, & Seeb, 2003).

The motivation to reduce the cost of development and increase positive benefits

was at the basis of Hayes’ experience article on expensive bug tracking (2002). Hayes

estimated that over $59.5 billion was spent on repairs and corrections to software (bugs).

Of that amount, Hayes considered over $22.2 billion or 37% could have been saved

through process improvements and better methodological practices (2002). The reason

this number has grown over the years is the lack of more precise software engineering

methods and tools. Hayes suggested that businesses are at an impasse and must decide on

better methods of code development that are faster, simple, yet robust enough to tackle

the increasing complexity of growing code bases. He suggested practices such as

programming in pairs, radical increase in automation testing, early unit tests, all of which

have lightweight best practices and require a commitment on the part of the company and

the programmer (Hayes, 2002).

Many more experience reports exist extolling the benefits of paired programming

and countering the observational concerns of two people doing what appears to be the job

 84

www.manaraa.com

of one. Increased quality, speed of production, tighter code bases, and better unit testing

are but a part of the benefits. Yet programmers have been taught to work alone, work in

straight line or linear patterns, keeping to tight regimens and rules. There is room for not

only new processes but also new educational experiences to create a new breed of

programmers ready to collaborate and generate high-quality software in an open and

shared environment (Williams & Kessler, 2000). The last section of this literature review

will explore the educational challenges and opportunities that lay ahead.

Paired Programming and Education

Research and general literature reviews indicate that there are many educational

benefits to the use of paired programming in instructional settings (Williams, 2007).

There is a strong indication that paired programming creates an atmosphere of advanced

learning and active collaboration. This was found to reduce student frustration, increase

confidence, and build additional interest in Information Technology (Berenson, Slaten,

Williams, & Ho, 2004). This does not mean that paired programming is the only method

that should be taught. Combinations of collaborative and individual programming course

work are central to a well-rounded software development education (Berenson, Williams,

& Slaten, 2005). The introduction and focus on programming collaboratively is a new

addition to the technology educational arsenal.

Collaborative programming, especially working in pairs, has positive and

negative results for both the student and the instructor. Williams, McDowell, Nagappan,

Fernald, and Werner (2003) found that programming in pairs appears to increase

knowledge retention especially among female students. It tends to reduce certain negative

conditions of traditional individual programming, particularly in the beginning years of

 85

www.manaraa.com

training. Oblinger (2003) found that contemporary students prefer to work collaboratively

and that an educational process that mimics the industrial world’s demand for better

teamwork and communication produces more successful graduates and programmers.

The negative aspects are small. Some students will always want to work alone. This

could be due to being more intelligent and not wanting to drop to another student’s level.

Another is the actual management of time to collaborate. Many times, especially with

younger students, time-management is not an acquired skill; not to mention the regular

distractions of college life (Williams, 2007).

McDowell et al., (2003) take a different approach to paired programming

education in their observation study of collaborative programming in the classroom. They

noted that most important projects use teams or groups of people to accomplish the work.

It is normal for many trained programmers to look over the shoulders of others or to

discuss a particular direction or method while in the coding phase of the project. With the

advent of paired programming, more collaborative methods have been used to

accomplish tasks. The experiences in colleges and universities have not kept pace with

the professional world. McDowell et al. (2003) propose that as student’s progress, their

ability to work collaboratively should be increased. McDowell, Werner, Bullock, and

Fernald (2006) suggest that requiring students to do projects alone should be stopped in

lieu of working collaboratively. Experimentation and ethnographic studies have indicated

that benefits such as more students passing computer science courses, higher quality

instruction programs, reduced project completion times, increased student satisfaction,

and increased numbers of students pursuing an Information Technology career provide

 86

www.manaraa.com

motivation to move forward with collaborative programming instruction (Williams et al.,

2002).

Additional variables can play a part in a successful educational strategy to teach

collaborative programming. The classroom can be arranged for a highly guided and

monitored environment or there can be little to no instructional supervision leaving the

programmers to themselves to solve problems and ask questions of one another (Bevan,

Werner, & McDowell, 2002). McDowell et al. (2003) found very little difference in time

spent by pairs versus time spent by individuals in the completion of their assignments.

Williams et al. (2000) indicates that the total time to complete a task decreases as the pair

works together over time.

Preston (2005) contributes to the study of the educational aspects of collaborative

programming in his observational study of paired programming practices in introductory

software engineering courses. His research supports paired programming as an effective

instructional method for teaching programming and an efficient method consistent with

computer sciences and its constantly changing disciplines (Cliburn, 2003; DeClue, 2003;

McDowell et al., 2003). The benefits of paired programming being taught at all levels,

from the observations of the studies include higher level program quality, decreased time

to complete programs, improved understanding of the programming process, increased

course completion rates, and improved exam performance. Five critical attributes that

were common to a paired programming instructional approach include common task

suitable for a collaborative process, small group learning, cooperative behavior,

interdependence, and individual accountability (Davidson, 1994).

 87

www.manaraa.com

Jacobson and Schaefer (2008) presented a study that established the ability to try

paired programming in their undergraduate basic computer science curriculum. The

objections to using paired programming were reflective of objections in the industry. One

basic concern presented included whether problems could occur with paired

programming that would reduce the effectiveness of imparting computer science

knowledge to students at the basic levels. Another concern presented indicated that paired

programming would remove the ability to assess each student’s programming capability

individually and might hurt the ability for the student to work independently in other

courses and/or in industry. Information collected from student surveys, teacher assistant

observations, and object student exams indicated that computer science information was

disseminated properly. The second concern was addressed by the successful use of

individual programming exams that demonstrated comparative similar scores to non-

paired programming courses (Jacobson, 2000). The scores had actually improved with

the paired programming practices used in the course. Course expectations were laid out

clearly with distinct outlines on how collaborative behavior was to be engaged. The study

found that there were no indications of a loss of individual programming capability or

rampant pair breakups (Jacobson & Schaefer, 2008).

Zin, Idris, and Subramaniam (2005) found that paired programming was the most

applicable method for learning programming through e-learning or distance education.

They found that normally e-learners were disconnected from other students as well as the

instructor. Paired programming created a means and a motivation to connect with a peer

and improve the e-learning experience while practicing a programming methodology

(Herbskeb & Grinter, 1999). They termed this virtual pair programming (VPP) (Baehti,

 88

www.manaraa.com

Gehringer, & Stotts, 2002; Hanks, 2004; Kiercher, Jain, Corsaro, & Levine, 2001).

Instrumental to the success of e-learning was the availability of an open forum portal for

collaboration, information, and knowledge sharing. At the end of the courses, students

were given a questionnaire to collect their perceptions on the effect of paired

programming in the e-learning environment. The results indicated that students perceived

he or she had acquired the confidence and capability to go to the next level of

programming training through their collaboration with their peers. They experienced less

anxiety and greater support than if he or she were alone in their e-learning experience.

Logistical improvements were suggested by the students to include the use of an online

compiler and the capability of instant messaging to assist in communication (Zin, Idris, &

Subramaniam, 2005).

Collaborative programming in computer education programs appears to be a

substantive part of improved program success rates and better experiences for students

and instructors alike. McDowell et al., (2006) engaged a study to confirm these

perceptions and to review the reasons for a low population of women in the field. They

found that paired programming when used in a software engineering learning

environment increased the number of women and men continuing in their previously

indicated degree pursuits, especially in computer science (Williams et al., 2003).

Additionally, paired programming, when used in software engineering instruction,

created increased satisfaction with the problem-solving process and a greater confidence

in the resulting solutions. The study found that some instructors continued to rely on solo

programming in an academic setting for fear that one of the pair might not learn as much

as the other and/or that assignments would not be completed adequately (McDowell et

 89

www.manaraa.com

al., 2006). Although there was no empirical answer to this concern, McDowell et al.

(2006) felt that this was not paired programming and that some instructional monitoring

could catch problems earlier in the learning process to avoid these problems.

Another aspect of this study was whether using collaborative pairing as a learning

aid would influence course completion results and computer science, learning behaviors

as indicated by pass rates and continuation of study in the information technology field.

McDowell et al. (2006) found students who were involved with pairing were significantly

more likely to stay the course through the final exam than students who were not paired.

An increase in pass rates was noted for students who were paired but the increase was not

statistically significant. Pass rates for men and women who were paired were at similar

levels. Pair Pressure (Williams & Kessler, 2000) is the influence on the work of a

closely working peer. This may be a part of the reason for the higher participation rates in

the study. Students who were part of a collaborating pair showed a significant increase of

those who declared a computer science major as compared with those who programmed

individually. The continued low representation of women in the computer field highlights

the need for practices that foster women’s interest and result in their educational and

professional success (Werner, Hanks, & McDowell, 2005). Paired programming is a

practice that offers that possibility with a wide range of benefits for both men and women

(McDowell et al., 2006).

Summary

The literature is highly complimentary of the paired programming practice.

Benefits abound in studies, experiments, surveys, and experience reports indicating that

the general practice of collaboration in software engineering has financial as well as

 90

www.manaraa.com

technical values. A review of educational writings indicates that paired programming

practices improve education, participation, knowledge retention, and future pursuits of

computer related studies. Yet there appears to be a reticence to employ paired

programming in some business areas. The literature reveals that biases continue as two

programmers working at the same terminal cause fears of waste and costly technology

employment. The research methods and activities outlined in the following chapters will

describe an empirical survey of software development managers’ attitudes and intentions

in an effort to understand whether and to what extent the practice of paired programming

might be used in the future.

 91

www.manaraa.com

CHAPTER 3. METHODOLOGY

Today businesses are faced with growing costs, higher demands for speed of

software delivery, and better efficiency in software engineering (Hayes, 2002). When

first introduced, Extreme Programming Methodology and the paired programming

practice offered to provide quicker and more reliable software delivery results to

businesses. Today many software development professionals are questioning those first

findings and challenging the cost effective nature of the paired programming practice

(Levy, 1987; Williams et al., 2000). This is primarily due to the use of two programmers

at a single workstation instead of individual programmers working independently (Hayes,

2002). The purpose of this study is to demonstrate, through the sampling of the intentions

and attitudes of software development managers, the perceived ease of use and perceived

usefulness of the paired programming practice compared to individual programming

practices.

The literature reflects a wide and variant set of methods in programming today,

even in the application of paired programming practices. Many authors have called for

continued research to produce additional empirical data on the practice of paired

programming. Part of that general call for more empirical data requires an understanding

of what the perceptions of software managers are today relative to paired programming.

An understanding of these perceptions will contribute to predictions of how and to what

extent the paired programming practice will be used in the future. A quantitative method

of analyzing the collected data using The Technology Acceptance Model’s mathematical

 92

www.manaraa.com

formula, a validated and reputable survey instrument, will be employed. The survey

provided in The Appendix, establishes the independent variables of the study and the

boundaries of the research. The results of this study produce some of the output called for

by Davis (1989) in his statements for future research. He stated, “More research is needed

to understand how measures such as those introduced here [acceptance of technology

practices, processes, tools, and systems] perform in applied design and evaluation

settings” (p. 335). By applying the practices of paired programming and individual

programming practices to The Technology Acceptance Model, a technology practice is

evaluated through an accepted and peer-reviewed measurement framework. The results

will also confirm the value of the modeling practice for not only theoretical but practical

and field-use as well (Shneiderman, 1987).

Understanding attitudes and intentions, relative to paired programming, adds to

the body of knowledge and gives credence to its acceptability and possible future practice

in business and industry. Simply understanding intentions and/or attitudes is not enough

to provide a scientific accounting of paired programming’s value as a practice or its

possible future acceptance and adoption by business and industry. As seen in Chapter 2,

various experimental studies have found paired programming to be an efficient practice

in software engineering. Yet other studies have found flaws in those findings. Those

studies have offered explanations and/or suggested changes in the practice to achieve

efficiencies that are more productive.

There is room for continued experimentation in the search of empirical data

proving or disproving the effectiveness and efficiency of paired programming. There is

also a need to determine what the current level of intention and attitude might be among

 93

www.manaraa.com

software development managers who are responsible for setting the methodological

directions of software engineering in their respective companies. Through an

understanding of their intentions and attitudes it is possible to predict their present and

future behavior with respect to the use (or non-use) of paired programming as a practice.

This can be accomplished using The Technology Acceptance Model, a tool that has been

proven to produce values that establish the behavior and/or acceptance of a technology

process, practice, or tool. This understanding will result in either a call for more detailed

experimentation in the use of paired programming, or a revelation that its use may be less

pervasive or less important than originally thought. The results of this research will

contribute to a foundation for building future empirical research in the determination of

paired programming’s ultimate contribution to businesses.

Research Design

Methodological Approach Background

A methodological approach is necessary in this study to provide a structured and

scientific framework to apply the surveyed opinions of development managers on the use

of paired programming. The use of Davis’ Technology Acceptance Model (1989) is a

solid and often used methodological framework for technology practices, processes, and

tools. A clear foundation is necessary on how The Technology Acceptance Model

provides the scientific basis of predicting acceptance and ultimate usage.

In the early 1980’s it was determined through psychological research that

intentions and attitudes could be measured and projected into current and future behavior.

What people thought about a subject and how they felt about it could be analyzed to the

point of predicting their behavior toward that subject (Ajzen & Fishbein, 1980). This is

 94

www.manaraa.com

the basis of the Theory of Reasoned Action. Variations on this theory built up throughout

the years as studies indicated that the more a person knew and/or believed in a subject or

process, the more he or she would behave toward acting on those subjects or using those

processes (Ajzen, 1985, 1987, 1991). There was an essential bridge at this point in the

research to produce not just a psychological profile, but a sociological reality that

predicted the behavior of people based on their attitudes and intentions. This reality was

determined by substantive measures that produced coordinated results from attitude and

intention surveys and comparative analysis with actual demonstrative actions of people to

subject areas (Ajzen, & Fishbein, 1980; Ajzen, 1987, 2005). These measures laid the

groundwork for a more formulative and mathematical application of this theory. This

provided Davis (1985) the opportunity to focus these theories toward the acceptance of

various processes, practices, and tools within the area of technology.

Davis, in his 1985 dissertation from MIT’s Sloan School of Business, devised a

formulative mathematical application using the Theory of Reasoned Action and the

Theory of Learned Behavior called The Technology Acceptance Model (TAM) (1989).

This model provided for the measurement of perceived ease of use and perceived

usefulness of a process or subject based on the surveyed attitudes and intentions of test

groups. It was also based upon the results of a mathematical and statistical formulation

indicating acceptance (or lack thereof) of a subject or process (see Table 1 and Figures 2

& 3). The literature is robust with scientific documentation on the application of the

TAM in various technology areas. Over 400 studies reflect the use of the TAM to

demonstrate acceptance of subject or process ranging from medical procedures and tools

to the acceptance of personal computers and cell phones. Substantive discussion exists on

 95

www.manaraa.com

the accuracy of the TAM in many of these applications. There is a preponderance of

evidence that the TAM has scientific value in predicting the present and continued use

and usefulness of processes or practices based on the collected attitudes and intentions of

respondents familiar with the process or practice (Ma & Liu, 2004). One practice area

that has not yet been subjected to the analysis of the TAM is the use of the paired

programming practice by software development managers. This is the focus and subject

area of this study.

General Methodological Approach

Consistent with previous scientific and positivistic studies, The Technology

Acceptance Model and its mathematical and statistical formulas were used to apply the

responses of software development managers on the subject of the perceived usefulness

and perceived ease of use of the paired programming practice in software engineering.

This was accomplished by a random survey of 500 software development managers from

around the United States about their attitudes and intentions regarding the use and ease of

use of the paired programming practice. The response data was entered into the TAM

formulae and through various statistical tests, helped to reject or not reject the null

hypotheses presented in Chapter 1.

Over 146 documented studies and over 1000 peer-reviewed articles have used or

referenced the TAM methodological approach for various technology subject areas. In

addition to the two variables basic to the TAM, behavior and usage results are added in

the analysis of the data from software development managers. Precedent for such

additions in TAM research exists extensively in literature and appears to be significant in

the progression of the TAM’s influence in technology acceptance research (Venkatesh &

 96

www.manaraa.com

Davis, 2000). The results of this study using actual attitudes and intentions of software

development managers will indicate whether and/or to what extent the paired

programming practice might be used in software engineering groups. Demographic type

data from the survey instrument will also allow the data to be broken down into various

business type categories, consistent with the U.S. Government Standard Industrial

Classification (SIC) system’s 10 major divisions (see Table 3). This will support the

hypotheses associated with the effect of business type on use of paired programming—

Ho4: Observations of paired programming compared to individual programmers working

alone will not be affected by the reporting software development managers’ type of

business.

Table 3. U.S. Government Standard Industrial Classification Codes by Major Division
Division Description

Division A: Agriculture, Forestry, and Fishing

Division B: Mining

Division C: Construction

Division D: Manufacturing

Division E: Transportation, Communications, Electric, Gas, and Sanitary Services

Division F: Wholesale Trade

Division G: Retail Trade

Division H: Finance, Insurance, and Real Estate

Division I: Services

Division J: Public Administration

Note: Adapted from http://www.osha.gov/pls/imis/sic_manual.html.

 97

http://www.osha.gov/pls/imis/sic_manual.html

www.manaraa.com

At the conclusion of the random survey of software development managers, the

survey data were analyzed, compiled, and the results applied to The Technology

Acceptance Model. The results of the TAM calculations indicated the possible usage of

the paired programming practice as compared to the individual programming practice.

The findings also indicated how the type of business affected software development

managers’ behavior and acceptance of the paired programming practice compared to the

individual programming practice. The methodology employed in this study was designed

to rely on a proven framework used in previous technology studies as well as a solid

progressive scientific framework of prediction from recorded behaviors, captured

intentions, and attitudes of respondents. Through the findings of this study, software

development practitioners will be aided in making informed judgments about the use of

the paired programming practice in their respective software engineering areas. These

results will also serve to guide technology and software business leaders in their

understanding of the usefulness and ease of use of paired programming for their

enterprises. The results from this study will help to guide future research, especially

experimentation, in determining the effectiveness and efficiency of paired programming

as compared to traditional individual programming.

Through this research, a solid contribution to the building of the body of

knowledge is being made on the perceived use and perceived usefulness of paired

programming as an efficient and effective practice for software engineering. This

knowledge base continues to progress and evolve. It becomes richer with the results of

studies such as this one and others that assimilate observation and future research into

paired programming’s contribution to business.

 98

www.manaraa.com

Sampling

The research design for this study was a systematic random sample survey of 500

software development managers from around the United States. The survey designed for

this study was taken, with already established permission, from the survey used by Davis

(1989) that determined the predicted ease of use and predicted usefulness of several

technology subjects. The data collected from the survey used in this study was processed

through The Technology Acceptance Model’s mathematical formulation (see Table 1).

The results indicate a significant relationship between perceived ease of use and

perceived usefulness of the paired programming practice as well as a measured

significance between these variables within the individual programming practice

construct. In this study, a statistical comparison of the predicted ease of use and predicted

usefulness of both practices along with a comparison of self-reported usage were made.

The findings reject or fail to reject the hypotheses proposed in Chapter 1.

Target Population

The specific target population was software development managers within the

United States. The term: software development manager, can mean any person

responsible for software development or code engineering of software programs for use

in computing environments. It should be noted that this could mean software intended for

use internal to the business (such as software developed for an Enterprise Resource

Planning system) or as commercial off the shelf products (such as shrink-wrapped

software applications for commercial or semi-commercial sale). The level or title of a

software development manager is not considered significant in this study. Assumptions

made with this title include the general responsibility of the software development leader

 99

www.manaraa.com

to determine the methodology and practices employed by his or her software

development group. Chief Technology Officers and Chief Information Officers are

considered software development managers for the purpose of this study because of their

responsibilities associated with the groups that produce software code. This responsibility

for software engineering is also relevant for application software leaders who hold the

title of Director, Vice-President of Software Engineering, or other such titles that indicate

a basic responsibility for software development practices within their software

engineering groups. Email listings are publicly available for those responsible for leading

software development groups. These listings are valuable to the survey’s basic capability

to export an electronic questionnaire as part of the data gathering and research process.

Sample Frame Random Stratified Selection

A random sample of 500 software development manager emails was acquired

from the target population by a sequenced ratio selection of the total target population. To

achieve a random sample, the total value of the population (Z) was divided by 500 and

resulted in a sequence number to be applied to the total population. For example, with a

target population (Z) of 1500 emails, divided by 500 (X), would result in every third

email selected from the sample frame. The sampling ratio or probability of selection (P)

is equal to the sample size (X) divided by the population size (Z) (P = X/Z). For this

example, the probability of selection is 0.2% (0.002). Records in the target population

presented to the sorting engine in alphabetical order of the email’s address line provided a

reasonable sample without location or business-type influences or biases (Deming, 1960).

 100

www.manaraa.com

Sampling Methods

The method of sending surveys was through electronic mail. The mail message

had an embedded hyperlink that took the respondent to a professional survey site. The

respondent had the choice to click on the hyperlink to go to the survey or exit the email

and delete it. The email had no agents or cookies deposited on the respondent’s

workstation. Once the respondent clicked the hyperlink to go to the survey site, a further

explanation of the survey was given. The respondent at this point had the opportunity to

accept (go onto the survey) or escape (leave the survey site). At all times and on all pages

of the survey, the respondent had the ability to stop the survey and escape (log out of) the

survey site. Several ethical and procedural conditions are met in operating the survey in

this manner. First, the two-staged process of first seeing an introductory email explaining

the study with the ability to escape/delete or move forward, establishes voluntary and

informed consent. The second, after landing on the survey site where a consent form is

presented; the respondent has the choice of moving forward or escaping the site.

Throughout the survey, the respondent could escape any time and abandon the survey.

This confirms voluntary and informed consent and establishes the conscious decision of

the respondent to complete the survey.

The actual survey instrument was produced from a commercial survey generation

site called SurveyMonkey. Using the pre-established sample frame, an introduction email

was send to the proposed respondents. The respondent had the chance to take the survey,

delete the email and not take the survey, or wait and take the survey at another time. The

initial survey was posted for three weeks, after which the survey site URL was expired.

SurveyMonkey automatically collected the survey responses and provided the raw data as

 101

www.manaraa.com

well as a series of general summation reports from which data analysis and statistical

tests were applied.

Instrumentation and Measures

The survey instrument used in this study is patterned after the TAM survey

template developed by Davis (1989), (see The Appendix). Permission to use this survey

template was obtained in electronic form from Davis on July 16, 2008. There are six

sections to the survey. Each of these sections in the survey instrument address a particular

variable: (a) Usefulness for paired programming practices, (b) Usefulness for individual

programming practices, (c) Ease of Use for paired programming practices, (d) Ease of

Use for individual programming practices, (e) Self-reported Usage, and (f) The collection

of demographic and respondent experiential information. There is nothing in the survey

instrument that identifies the respondent personally or through a position within a specific

company. No company names or specific titles are used in the survey. No specific or

descriptive titles are given in these sections in order to eliminate possible pre-conclusions

by the respondent. Instead, sequential Roman numeral designators are used.

A seven point Likert scale was used to measure responses in five of the six

subject sections of the instrument. On the survey, explanatory descriptors were used to

aid in the placement of the respondent’s selection (see Figure 7 for a scale sample). An

effort was made to equalize all measurement scales in order to provide a more accurate

comparative analysis. Demographic data was provided to sort records easily and support

hypotheses related to the effects of gender, business type, experience with paired

programming, and experience with software development as well as actual titled position,

 102

www.manaraa.com

and number of years of experience in paired programming environments and/or

individual programming environments.

Sample Survey Scale

Using Paired Programming in my Software Development Group would
enable me to accomplish tasks more quickly.

Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

Likert
Values 7 6 5 4 3 2 1

Figure 7. Sample – survey scale. This sample shows the Likert scale used in the research
survey (see The Appendix)

Data Collection

Using an eSurvey Engine

Data collection for this study was accomplished through SurveyMonkey, a web-

based commercial survey-software engine provider. Their services used in this study

included the collection of data and the application of several statistical analysis tools. The

data was provided through a series of Microsoft Excel spreadsheets and was easily

portable to the SPSS version 15.0 data analysis application program and to Microsoft

Office Professional 2007 Excel-Data Analysis. It is not anticipated that later versions of

the SPSS application will affect the outcome, validity, or reliability of analyses in this

study. These programs were used to produce the necessary statistical analysis that has

been reported in Chapter 4 of this study.

The data research process within this study used email addresses to connect with

possible respondents. This method kept anonymity high for the respondents and provided

 103

www.manaraa.com

for a more random and unbiased sampling process. The email listing was obtained

through BizExUSA.com, a marketing contact web site and IEEE, a technology academic

and professional association. The first generation pass for Software Development

Managers yielded 1312 hits. Names, addresses, and business types were excluded from

the records report with primary emails being the key identifier for the record. The email

listing was randomly sorted to provide a listing of the primary 500 records. With these

records extracted, another random sort was made to yield a secondary 500 record listing.

It was anticipated that there would be between a 15% to 25% response rate to this

survey. An option was planned should the initial survey fail to yield these results. This

included the execution of a secondary survey drawn from the original target sample. A

method was available to extract the original 500 records from the secondary sample

frame prior to reapplication to the target population. This is how an additional set of

possible respondent emails was processed. As described in Chapter 4, this process was

repeated three times before sufficient data was collected to obtain a successful sampling

rate of approximately 10%.

Consent

An electronic mail listing was engaged that when opened delivered an email

message with a web-link to the survey site. This method was used to contact possible

respondents from the randomly selected target group derived from a sample frame of

software development managers. The email explained the reason for the contact and

included a web hyperlink provided for the respondent to select and then go forward to the

survey or to select the Exit button that returned the respondent back to the email inbox. If

the respondent selected the web hyperlink, a survey instruction page appeared along with

 104

www.manaraa.com

an informed consent form. The respondent had the opportunity to select either the

Continue button or the Exit button as the manner of consent or non-consent respectively

to participate in the survey. Selecting the exit button stopped all forward progress toward

the survey and returned the respondent to the original email. Selecting the continue

button advanced the respondent to the survey introduction page and the actual survey (see

The Appendix). The respondent was able to exit the survey at anytime by selecting the

Exit Survey button.

At all times, the respondent had the choice of exiting the email and deleting the

email message, exiting the email and saving it for attention at a later time, or clicking the

hyperlink to send the survey to the Survey Monkey location where the survey was

administered. Once in the survey site, the respondent was able to see a further

explanation of the survey. At that point, the respondent could exit the survey engine and

delete the engaging email, exit the survey engine and come back later, or select Continue

to move forward to the survey. These movements and choices along with the opportunity

for the respondent to exit the survey in two places, at any time prior to taking the survey

and during the survey, formed the basis of the respondent’s informed consent for the

survey.

Data Analysis

Meeting Statistical Guidelines

There are four general areas in the analysis associated with hypotheses one

through three: (a) Perceived usefulness of paired and individual programming, (b)

Perceived ease of use of paired and individual programming, (c) Self-reported usage, and

acceptance, and (d) Calculated usage data (Davis, 1989). For analysis purposes, a

 105

www.manaraa.com

Cronbach Alpha reliability coefficient calculation for each construct was conducted for

the survey used in this research. The original calculations that were made by Davis

(1989) achieved the desired result for each construct, which was above the minimum

standard of 0.70 desired for social science or management research. Data collected

followed a normal distribution as indicated by Davis’ actual results and validity measures

(1989). A normality test for distribution was made and reported to assure that the values

followed planned normal distribution.

Statistical Analysis Tools

The statistical analysis tools used in this study are correlation and regression

analysis consistent with the TAM formula. Correlation analyses are applied to the four

constructs. The Technology Acceptance Model is the theoretical framework used in this

study and is built on the relationships between intention and attitude that, when measured

through correlation and confirmed through regression analysis, can predict the behavior

of usage for a technology process, tool, or practice (Davis, 1985, 1989). The outcome of

these relationships provides a basis for prediction of behavior toward the subject as well

as an acute estimation of usage (Mason & Bramble, 1989). Linear regression and

regression analysis is used to compare the correlational variable content that will be

applied in the TAM formula (see Table 1). For the constructs, the results and associated

p-values of significance are presented between perceived usefulness and perceived ease

of use, between perceived usefulness and perceived ease of use and behavioral intention

to use, and between behavioral intention to use and actual usage. Data is then loaded into

Microsoft Office Professional 2007-Excel and SPSS version 15.0 application for

statistical presentation and analysis, which is further explained in Chapter 4 of this study.

 106

www.manaraa.com

In order to perform the required analysis used within this study, the TAM

methodology was followed using both Davis’ 1989 study and an application of the TAM

as outlined by Money and Turner (2004). Their research study provided a peer-reviewed

and accepted model for applying the TAM to a technology process, practice, or tool.

Relationships and correlations between the key factors of TAM and the collected

responses from software development managers on the practice of paired programming

and individual programming, form the research and analysis framework for this study

(see Figure 8).

The TAM Research Model with Correlations Variables

Perceived
Usefulness

Perceived
Ease of Use

Behavioral
Intention to Use

Actual
Usage

Value B

Value C
Value F

Value D

Value E

Value A

Figure 8. The TAM research model with correlations. This graph shows how the various
values applied to the TAM are combined to form a measure of actual usage. Adapted
with permission from A TAM framework to evaluate users’ perception towards online
electronic payments (p. 5), by G. Rigopoulos, and D. Askounis, 2007. Journal of Internet
Banking and Commerce, 12(3). Copyright 2007 by the Journal of Banking and Internet
Commerce.

 107

www.manaraa.com

Statistical Tests Employed

In The Technology Acceptance Model, there are two standard statistical tests,

Correlation Analysis, and Linear Regression, as well as mean (arithmetic) values from

the combinations of question-values from the groups of the various constructs of the

survey. The correlational analysis is bivariate, meaning there are two continuous

variables measured using an interval scale. The resulting outcome does not recognize an

independent and dependent variable, as both variables are symmetrical. These primary

variables or constructs are perceived ease of use (EOU) and perceived usefulness

(USEF). Each is treated symmetrically as the coefficient r(eou)(usef) has the same

interpretation as r(usef)(eou) (Cooper & Schindler, 2006). The variable, Attitude and

Behavior (ATT) is derived from the self-reporting usage data. The final variable, Actual

Use (USE), results from the primary variables delivering data into the TAM formula and

processing it through the regression and correlation operations (see Table 1) (Davis,

1989).

The second statistical test in the TAM is a simple linear regression or regression

analysis. This provided the predictive values necessary to confirm the correlational

determinates of usage and acceptance of the subject practice within the TAM. Regression

explains relationships. Within the TAM, the relationship was explored between perceived

ease of use and perceived usefulness once the coefficient of correlation is determined (see

Table 1, step 3). Bivariate linear regression was then applied to the resultant correlational

values of the constructs EOU and USEF. This resulted in a value that represented the

attitude toward using the subject practice (paired programming) represented by the

variable ATT (see Table 1, step 3). Predictive use was then confirmed by a calculation

 108

www.manaraa.com

applying a simple regression against the attitude variable to form the resultant output of

usage (USE) (see Table 1, step 4). It should be noted that for all steps in the TAM

formula, ε symbolizes the deviation of the ith observation from the mean as a form of

error checking (see Table 1).

The process of applying the statistical tools of correlation and regression found in

the TAM is simple. The values from the surveys were calculated to ∑ sigma summation

for perceived ease of use (EOU) and correlated. A ∑ summation for perceived usefulness

(USEF) data was also made, correlated, and applied to the perceived ease of use variable

(Robson, 2002). Both EOU and USEF were then correlated to the ∑ summation of self-

reported behavior to use or intention for usage (ATT). EOU and USEF were also

correlated to usage USE to determine the final value for predicted future use. Both results

for paired and individual programming were independently regressed and compared (see

Table 1) (Davis, 1985, 1989). Both variable constructs for the paired programming

practice and the individual programming practice were compared for actual values to

determine the one most and/or least used. This pointed to a rejection or non-rejection of

the hypothesis Ho2.

Correlation tables are constructed and displayed in Chapter 4 to show associated

values and results of perceived usefulness, perceived ease of use, and self-reported usage

for both paired programming practice and individual programming practice. The variable

subjects of the paired programming practice and the individual programming practice are

combined and presented in a correlational display between the variables shown in various

tables. Other tables found in Chapter 4 show the mathematical representation of the TAM

method in formula form (see Table 1), and represent the statistical testing model for

 109

www.manaraa.com

rejection or non-rejection of the null Hypothesis (Ho3). Prior to that, the mean values of

perceived ease of use, perceived usefulness were correlated separately (between paired

and individual programming) to show independent effects on each of the constructs.

A regression analysis table is displayed in Chapter 4 to show the effect of

perceived usefulness and perceived ease of use based on self-reported usage as a

confirmation of the correlational tests (Davis, 1989). Although a regression value was not

specifically a part of the TAM, it was used by Davis to demonstrate the validity of the

correlational values (particularly perceived ease of use and perceived usefulness) when

compared to self-reported usage. The regression chart shows the pooled (combined) value

and displays regression values against usefulness, ease of use, and the resulting R2.

Associated p values depicting significance for each calculation are noted. This is not a

calculation for the confirmation of the hypotheses, but rather a calculation that Davis

(1989) used in confirming the relevance of the TAM formulae. It should be noted that

Davis did not segment behavioral intent to use and self-reported usage, but pooled these

values. In this study, these values are segmented into behavioral intent to use and self-

reported usage, following the methodology of Rigopoulos and Askounis (2007).

Statistical Tests Linked to Hypotheses

The first hypothesis (H1) tests the correlation of perceived ease of use (EOU) of

paired programming and individual programming. The summations of the survey values

were collected and the mean values compared and correlated. These values were then

entered into the TAM formula (see Table 1, step 1). Davis indicated that the TAM values

had normal distribution in his studies (1989). In this study, a test was conducted to ensure

the data was normally distributed. The data collected was found to be normally

 110

www.manaraa.com

distributed and the sample size large (more than 30 samples were collected with values

that are ordinal) as well as with independent variables. This resulted in a Z test being

used to reject or not reject the null hypothesis. (Had the data collected been a normally

distributed set with a small sample for the independent variables, [less than 30] a t test

would have been run to reject or not reject the null hypothesis.) The results produce a

95% confidence factor that will accept the null hypothesis as correct if the calculation is

less than two. If the calculation produces a value greater than 1.96, (more than 1.96

standard deviations of separation) then the null hypothesis is rejected. The value was then

entered into the EOU variable of the TAM.

The second hypothesis (H2) tests the correlation of perceived usefulness (USEF)

of paired programming and individual programming. The summation of the survey values

was collected and the mean values compared and correlated. The mean values were then

entered into the TAM formula (see Table 1, step 1). A Gaussian (normal) distribution was

completed to represent the combined data. Davis indicated that the TAM values had

normal distribution in his studies (1989). In this study, a test was run to insure the data

was normally distributed. The data collected was normally distributed and the sample

size large (more than 30 samples were collected with the values appearing to be ordinal)

as well as there were independent variables. This resulted in a Z test being used to reject

or not reject the null hypothesis. (Had the data collected been a normally distributed set

with a small sample for the independent variables, [less than 30] a t test would have been

run to reject or not reject the null hypothesis). The results produce a 95% confidence

factor that will accept the null hypothesis as correct if the calculation is less than two. If

the calculation produces a value greater than 1.96, (more than 1.96 standard deviations of

 111

www.manaraa.com

separation) then the null hypothesis is rejected. The value was entered into the USEF

variable of the TAM.

To answer the primary research question and third hypothesis (H3) of this study,

it was necessary to determine the value of actual usage for both the paired programming

practice and the individual programming practice. The value of usage (USE) for each of

these constructs was measured by a progression of separate correlational tests on the

mean values of summation of the questionnaire constructs and t tests (normalized data,

with a low sample value [<30]) to determine significance. The tests reject the null

hypothesis based on difference between correlated means of usage compared between the

two constructs (paired and individual). A confidence factor of 95% was chosen, which is

close to two standard deviations of separation between the means. The values in the t

table represent the area under the normal curve for the number of standard deviations

selected. 95% confidence factor indicates there is only a 5% chance that the means will

be greater than two standard deviations by chance. This results, with a 95% confidence

factor, will confirm the null hypothesis as correct if the calculation is less than 1.96. If the

calculation produces a value greater than 1.96 (more than 1.96 standard deviations of

separation), then the null hypothesis is rejected. There is only a 5/100th chance this will

happen by chance. If there is a result of five, this would mean the number of times, out of

100, this could happen by chance. This would actually be significantly less and would

reject the null hypothesis with higher confidence.

The t tables used for this test are set for a range of +1.96 to -1.96 standard

deviation. These are the 95% confidence limits for confirming the null hypothesis with

95% confidence. If the calculated value is greater than 1.96 then the null hypothesis is

 112

www.manaraa.com

rejected. At this point 2.5% of the normal curve's area is greater than 1.96 and 2.5% is

less than -1.96. At that point, 5% of the normal area is outside these limits, which means

that if the calculated number is greater than 1.96 there is only a 5% chance this could

have happened by chance. Using this test, the null hypothesis values typically ignore the

sign and thus take absolute values (Dorofeev & Grant, 2006).

The TAM formula calculates the intentions and attitudes of software development

managers through the correlation and regression of the mean summation values from the

data of perceived usefulness (USEF), perceived ease of use (EOU) and self-reported

attitude toward usage (ATT-which is a combination or pooled value of behavioral

intention to use and actual self-reported usage). This process is replicated for the

constructs of the paired programming practice and individual programming practice each

having a usage (USE) result. The usage results were correlated and compared to

determine the final values against the criteria for rejection or non-rejection of the null

hypothesis. The value of usage (USE) also provided a variable for other tests in this

study. The hypothesis assumed that the resultant relationships demonstrated a positive

acceptability and usage of paired programming over individual programming.

Additional Hypotheses Tests

The TAM offers the opportunity for determining the value of acceptance/usage of

a practice. That value can have significant relationships that heretofore have not been

discovered. The following variables relate specific conditions to the resultant value of

TAM-usage.

The first of these variables (related to Ho4) provides for an analysis of the mean

relationship between the business type and the resultant usage value of paired and

 113

www.manaraa.com

individual programming. There are 10 general business types (see Table 3) or divisions

designated by the U.S. Government Standard Classification Codes (2008). Survey

responses were sorted by these various types and correlated to determine if there is a

variation of significance between any of the types. This correlation indicates the

possibility that a business type might influence the usage or acceptance of the paired

programming practice in a general type of business. The research within this study offers

the opportunity to understand the relationships of acceptance and usage (of paired

programming) with the types of businesses that might employ this practice. An analysis

of variance (ANOVA) comparison of the TAM results based on the USE variable and the

variable of business type found in section VI of the survey, provided an appropriate and

highly informational data point on what business types might employ the paired

programming practice as compared to other business types. In this study, the relationship

of business type to behavioral acceptance of the paired programming practice has

significant practitioner benefits. This analysis departs from Davis’ (1985, 1989) research,

but is consistent with his call to extend the research to practical field applications and

relationships. Follow-on research will also benefit from the collection of this data and the

analysis of the findings; especially when considering the business type and whether to

employ or not employ the paired or individual programming practice for a particular

business type or industry.

The next variable (related to Ho5) provides for an analysis of the relationship

between the software development manager’s experience (in software development) and

the level of acceptance/usage of the paired programming practice. In the literature review

of Chapter 2, there is evidence that paired programming is a practice being used to teach

 114

www.manaraa.com

new and junior programmers. It is possible that the use of the paired programming

practice is a result of current software development pedagogy and not related to a

software manager’s experience. There may be evidence that the more experienced a

software development manager, the less likely that manager may be aware of/or positive

toward the usage of paired programming. A non-parametric test of the variable of

software development managers’ experiences to the result of acceptance/usage is

appropriate in this situation. The use of an ANOVA can test the differences between the

software development manager’s experiences and the result of acceptance/usage (USE) to

reject or non-reject the null hypothesis (Ho5). The data is ordinal in nature, leading to

some minor errors. The abundant sample size helped to support the significance of

differences in the two variables (Cooper & Schindler, 2006). This result has future value

for follow-on studies related to types of practices employed by software development

managers. This relationship highlights the possible connection of the respondents’

experience and their acceptance/usage of the paired programming practice, compared to

the use of the individual programming practice. This simple mean measure indicates the

effect, if any of the previous development managers’ experience on their acceptance

and/or use of paired programming. There is some indication, as was indicated in Chapter

2 above, that previous application development experience may be inversely proportional

to the level of paired programming acceptance.

Displaying Results

As with Davis (1989) and Rigopoulos & Askounis (2007), tabular displays of

statistical tests (for Ho1 through Ho3) are provided in Chapter 4. The first set of tables

display the correlations between perceived usefulness, perceived ease of use, and self-

 115

www.manaraa.com

reported practice usage. Value entries are coded for their respective p values to indicate

significance. Columns include the two subject variables of paired programming,

individual programming, the correlation of usefulness and usage, the correlation of ease

of use and usage, and the correlation of ease of use and usefulness.

Validity and Reliability of the Survey

Survey Construction and Validity Measures

Original Survey Validity Measures. The initial survey developed by Davis (1989)

attained a Cronbach Alpha (1951) reliability value of 0.97 for the first variable of

usefulness and .91 for the second variable for ease of use. Discriminant and convergent

validity were attained through the multi-trait/multi-method matrix (MTMM) (Campbell

& Fiske, 1959). It appears that the methods used in Davis’ original study were a

combination of initial surveys, individual, face-to-face interviews, and post-

questionnaires. Two methods were used: same traits-different method and different

method-same trait. These were applied to the constructs of perceived usefulness and

perceived ease of use. Because of the MTMM correlations, Davis (1989) altered some of

his scaling to improve the survey for perceived ease of use. The final survey instrument

forms the foundation of the one used in this study.

The MTMM matrix covers the inter-co-relational methods applied to the two

variable traits (usefulness and ease of use). Convergent validity applies to the scale if it

acts as if it is measuring a common construct and elements that measure the same

variables should display a high rate of correlation with one another (Campbell & Fiske,

1959). Davis’ (1989) results produce high correlations between the two variables of

usefulness (95%) and ease of use (95.6%).

 116

www.manaraa.com

The other form of validity, discriminant validity, should display a measure that

differentiates between the various objects or variables measured. If there is little or no

differentiation, there may be a common thread of variance that is part of the survey

instrument or hidden variations in how respondents answer the same questions (Campbell

& Fiske, 1959). The test for discriminant validity indicates that an object should have a

high correlation with other objects that are measuring the same trait as opposed to a

comparison of objects with different traits. The Davis scales indicated less than 3%

exceptions for comparisons made, resulting in a high variance of objects, which are not

influenced by questions or the internal scales (Davis, 1989).

There is an importance to these elements. The basis of the survey instrument used

in this study is the original survey from the Davis 1989 study. It has already demonstrated

a high validity rate and should perform equally as well in this study as long as

consistency to the scale and the methodological artifact is maintained. The same question

patterns are used to achieve as close an alignment to the original survey artifact as

possible. Specific definitions in the survey explanation for perceived ease of use and

perceived usefulness are provided to reduce possible discriminant validity issues.

In the initial study, Davis (1989) was concerned with factorial validity as well.

This is a possible crossover of the scales between the variables and the possible extent to

how much crossover occurs between those scales. Data for both the variables indicated

that there was little to no crossover between the variables (Davis, 1989). Since this study

does not change the essential questions used by Davis (1989), no particular problems

with the survey were anticipated. Additionally, behavior and usage were measured in

order to meet the variable requirement of the TAM formula (see Table 1 and The

 117

www.manaraa.com

Appendix, Section V). Except for subject name changes, this section is replicated directly

from Davis’ (1989) survey.

Requirements for Validating the Current Survey

The survey in this study is taken by permission from the original Davis study

(Davis, 1989; personal communication, July 16, 2008). The survey used in this study

makes nominal changes to the terminology used in Davis’ original survey. For example,

in the original study, the TAM was applied to several automated charting tools and

processes. A survey on the perceived ease of use and perceived usefulness was conducted

for each charting tool to be studied. The focus of research in this study’s survey used

paired programming as the subject of interest. Individual programming was considered

the antithesis of the paired programming practice. These were then compared and

contrasted. Measures on the Likert scale indicate to what extent the respondent favored

the paired programming practice. Next measures on a Likert scale indicated to what

extent the respondent favored the individual programming practice. It was then possible

for the respondent to express a like (or distain) on a measured scale for either or both or

none of the practices. The elements and wording of the questions in the survey remain

substantially the same as in the original Davis survey (C. Butler & V. Coxon, personal

communication, January 16, 2009).

Since the subject names were changed in this study’s survey instrument, this

introduced a small foreign factor to an exact replication of Davis’ original survey. As a

result, a short validation pre-test was conducted using a Cronbach Alpha measure for

internal reliability and a face-to-face follow-up interview for validity (Humboldt State

University Survey Website, 2008). This was accomplished during a pre-test of at least 12

 118

www.manaraa.com

respondents. The survey was administered in hard copy and not through an email

hyperlink-to-survey engine. It used the same survey explanation directives as the formal,

emailed survey version and had the same capabilities for the respondent to withdraw

from the survey at anytime.

Pre-Test Survey Plan for Validity and Reliability

During the pre-test of the survey instrument, a group of 12 experienced senior

programmers was asked to assume the role of software development managers from one

of their former companies. They were asked to complete the survey in printed form and

then note any comments about the survey. 24 hours after the survey was taken, a sub-

group (approximately 40%) of the programmers was individually interviewed in a face-

to-face meeting. A standard list of questions was asked each respondent to determine if

their answers on the survey were consistent with the question’s intended meaning. Any

comments or questions about the survey were gathered at the time of the interview. The

results of the interview and the post-survey questionnaire were correlated to the values

from the pre-test survey to obtain a validation result.

The pre-test was conducted to find ways to increase actual participant interest,

ensure participants would complete the survey, ensure word and content level were

adequate, determine if questions required more or less understanding, and to determine if

there were quality issues with the survey (Cooper & Schindler, 2006). The results of the

pre-test indicated only minor changes were needed. No additional pre-tests were

indicated at that time. The pre-test results were analyzed using the Cronbach Alpha

statistical test for reliability and a post-survey questionnaire and interview were used to

test for validity (see Table 4). The pre-test was engaged prior to the application and

 119

www.manaraa.com

approval for research to the Institutional Review Board (IRB) for the execution of any

pilot survey and the main survey.

The pre-test surveys were each given a random alphanumeric code. A card with

the same alphanumeric code was given to the respondent. This code was also used on the

post-test questionnaire and interview comment form to support validation calculations.

Rigopoulos and Askounis (2007) used the term constructs in their TAM survey model to

represent groups of questions. This term was also used in the same manner for this study.

Results of the Pre-test Survey for Validation and Reliability

The data analyzed in the pre-test resulted in a Cronbach Alpha reliability

coefficient (see Table 4) for the constructs of Perceived Usefulness of 0.81, Perceived

Ease of Use of 0.62, and Behavioral Intention to Use of 0.93. These values indicate a

strong reliability measurement construct for Perceived Usefulness and Behavioral

Intention to Use but a weak reliability measure for Perceived Ease of Use. During the

follow-up interview, it was learned that Q11, Q21, Q23, Q24, and Q26 proved somewhat

confusing as respondents found it hard to respond to implementing a practice from a

manager’s role. They indicated that since they had not done this in the past, it was hard to

respond to the question. By inserting an average value of the standard deviation for these

five questions, the reliability coefficient for Perceived Ease of Use was raised to 0.80. By

eliminating this record from the post-test collection, the reliability coefficient for

Perceived Ease of use was raised to 0.81. Using either method meets the minimum

reliability score of 0.70 held for most social sciences (Compeau & Higgins, 1995).

 120

www.manaraa.com

 121

Table 4. Pre-test for Reliability Using Cronbach Alpha Method

Item Analysis of Q1 through Q7
Variable Count Mean StDev
Q1 11 4.273 1.421
Q2 11 3.545 1.508
Q3 11 3.545 1.508
Q4 11 3.182 1.250
Q5 11 3.364 1.027
Q6 11 3.727 1.348
Q7 11 3.545 1.368
Total 11 25.182 6.462
Cronbach Alpha = 0.8071

Item Analysis of Q8 through Q13
Variable Count Mean StDev
Q8 11 4.455 1.128
Q9 11 3.364 1.362
Q10 11 3.364 1.433
Q11 11 3.818 0.982
Q12 11 4.364 1.286
Q13 11 4.273 1.348
Total 11 23.636 4.456
Cronbach Alpha = 0.6187

Item Analysis of Q14 through Q20
Variable Count Mean StDev
Q14 11 3.364 1.433
Q15 11 3.909 1.300
Q16 11 4.182 1.328
Q17 11 4.636 1.433
Q18 11 3.909 1.300
Q19 11 3.000 1.265
Q20 11 4.182 1.471
Total 11 7.182 6.539
Cronbach Alpha = 0.8115

Item Analysis of Q21 through Q26
Variable Count Mean StDev
Q21 11 2.000 0.632
Q22 11 2.727 1.009
Q23 11 2.091 0.539
Q24 11 2.364 0.924
Q25 11 2.909 1.300
Q26 11 2.364 0.809
Total 11 14.455 3.205
Cronbach Alpha = 0.6265

Item Analysis of Q27 through Q31
Variable Count Mean StDev
Q27 11 3.727 1.794
Q28 11 3.273 1.421
Q29 11 3.182 1.328
Q30 11 3.364 1.433
Q31 11 3.636 1.748
Total 11 17.182 6.824
Cronbach Alpha = 0.9249

Consolidated Results
Construct Cronbach Alpha
Perceived Usefulness 0.8093
Perceived Ease of Use 0.6226
Perceived Ease of Use (adjusted)* 0.7993
Behavioral Intention & Usage 0.9249
Note: *Adjustment due to respondent anomaly,
average question standard deviation used.

The response rate of 11 completed surveys out of 12 surveys distributed provided

a good test backdrop. For validation purposes, six alphanumeric codes were picked from

the 12 distributed. One of the codes represented the survey that was not returned. This

resulted in five post-test questionnaires and five interviews. Each respondent was asked

to complete a questionnaire of six questions identified only with the alphanumeric code

from the card given to him or her during the pre-test. These summarized the actual field-

test survey questions as well as asked the respondent about his or her ability to think and

www.manaraa.com

 122

respond as a development manager instead of a programmer. A match of the

alphanumeric codes between the pre-test and the questionnaire were made. The results

from four out of five respondents indicated that their initial pre-test answers were

consistent with the post-test questionnaire for Perceived Usefulness. The results from

three out of five respondents indicated their initial pre-test answers were consistent with

the post-test questionnaire for Perceived Ease of Use. Four out of five respondents

indicated their initial pre-test answers were consistent with the post-test questionnaire for

Behavioral Intention of Use. Three out of five respondents indicated that they were able

successfully to maintain the role of a software development manager to answer the field-

test survey questions.

A review of the questionnaires indicated that the same person was inconsistent for

three of the constructs and was not able successfully to answer the questions in the role of

a software development manager. Another respondent also was inconsistent in answering

questions between the pre-test survey and the post-test questionnaire for the construct of

perceived ease of use. The coding indicated they were also not able successfully to

maintain the role of a software development manager. The post-test questionnaire was

consistent with the anomaly indicated in the Cronbach Alpha results for the construct of

perceived ease of use. It appeared that attempting to maintain a role as a software

development manager for the purpose of the pre-test was successful for some and not for

others. A review of the questions with low standard deviations for the construct of

perceived ease of use did require some dedication to the role of software development

manager. The anomaly of a lower reliability score, and the inconsistency of answers

between the pre-test survey and the post-test questionnaire, was understandable.

www.manaraa.com

 123

A follow-up face-to-face interview was held with five of the respondents after the

questionnaires were analyzed. During the interviews, each respondent was asked if he or

she had any comments or reactions to the pre-test survey and/or to the post-test

questionnaire. Four respondents indicated they did not have any comments, but indicated

that the survey was either interesting or that they were interested in the outcome. One

respondent indicated that it was hard for him to put himself in the role of the software

development manager. A review of his coded alphanumeric card indicated this

respondent was the one who had been inconsistent between the pre-test survey and the

post-test questionnaire. All respondents indicated that the survey questions would be

relatively easy for software development managers to answer since all the questions were

reasonably in the realm of a software manager’s experience.

It appears from the Cronbach Alpha reliability scores and the follow-up

questionnaire and interviews, that the survey has a solid basis of validity for respondents

that are software development managers (see Table 4). It appears that the Davis (1989)

survey instrument, as altered for obtaining perceived usefulness, perceived ease of use,

and behavioral intention and usage values used in this study, is valid and reliable. The

TAM and the associated survey instrument have been well tested in the field. Over 146

separate research studies have used the TAM successfully to determine behavior and

usage toward a process, product, or tool. There appears to be no reason to subject the

TAM to a pilot study for the purpose of this research endeavor.

Execution of the Main Research Survey

The sample frame was calculated through a selection program built through

Microsoft Excel 2007. The selected email listings were connected with the survey

www.manaraa.com

 124

invitation letter and sent through the Internet. The contact data consisted of the email

addresses of randomly selected software development managers from all over the United

States. The process of presenting the survey electronically was accomplished in two

stages. The first stage consisted of the introduction email. This introduced the proposed

respondent to the survey. The proposed respondent had the option of: (a) Clicking on the

URL that would take him or her to the survey home page, (b) Bookmark the URL for

later attention, or (c) Delete the email completely. Proposed respondents were not tracked

and were not contacted for reconsidered or follow-up participation.

The second stage involved the first two pages of the survey that provided the

instructions and definitions of the survey. Each page throughout the survey allowed the

respondent to either click to continue or exit the survey. These controls were provided to

allow the respondent to complete or depart the survey without the issue of being coerced

into completing the survey. In this regard, informed consent was provided, allowing the

respondent complete control of the experience. Respondents were informed in the

introduction email and on the survey instructions that the survey would take 8 to 12

minutes to complete. This time was established through a pre-test of 12 senior-level,

experienced programmers completing the survey in an average of 10 minutes.

The first four sections of the survey used in this study copied Davis’ “Final

Measurement Scales for Perceived Usefulness and Perceived Ease of Use” (1989, p.

340). This scaled survey was validated in Davis’ original 1985 Doctoral Dissertation and

again in his 1989 research study. In the 1989 study, Davis used several charting

applications as the subject of the acceptance model study. For this study, the paired and

individual programming practices will be the primary constructs. To maintain validation

www.manaraa.com

 125

of the original study, the charting application names in the Davis (1989) research were

replaced by the term paired or individual programming practice. The fifth section

introduced the measures for behavioral intention (to use) and actual usage (Rigopoulos &

Askounis, 2007). This provided the necessary data for the last two formulas in the TAM

calculation model (see Table 1).

The sixth section collected demographic and segmentation data. A test was

provided to make sure the survey was being taken by a software development

management professional. The first three response possibilities in Question # 31 provided

cause for the survey not to be counted in the primary data gathering. These responses

indicated that the respondent does not act as a software development manager, thus

polluting any consolidated data. The responses in question # 30 provided a segmentation

opportunity by type of business. These categories are consistent with the first 10, high-

level divisions of the Standard Industrial Code (SIC) classification and provide the

capability to co-relate data by business type to detect possible influences of a business

type on the perceived ease of use and perceived usefulness of paired programming. The

other questions in this section provide quality co-relative attributes to orient the data for

further analysis.

Once the survey was completed, the respondent was asked if he or she would like

a copy of the results. If the respondent wished a copy of the results, he or she was asked

to provide an email address where an electronic copy could be shipped. The email

captured in this email box was stored in a separate file from the survey data and was

provided by the survey engine vendor in a distribution listing. This distribution listing

was used to send a copy of the analysis, findings, and conclusions derived from this

www.manaraa.com

 126

study. Upon the completion of this study and the final reporting and distribution of

findings, this email file will be destroyed. At no time will the distribution listing be

shared or sold to any entity.

Ethical Considerations

This study focused on the attitudes toward usage of software development

managers toward the technology practice of paired programming, an element of the

Extreme Programming methodology. The central point of the research in this study was

to gather the attitudes and intentions of software development managers about paired and

individual programming practices. The goal of the study was to predict the current and

future use of paired and individual programming using The Technology Acceptance

Model (TAM) as a theoretical framework. The data that was gathered focused on

development manager’s attitudes and intentions. This data was aggregated for both

analysis and implementation into the TAM mathematical model. At no time during the

study was there an identification process of the respondents and/or their respective

businesses or any personal identification information collected or processed. The closest

data field element for segmentation is a high-level business type segmentation category

(10 categories at the division level) based on the U.S. Government Standard Industrial

Code specifications. The study results yielded a scientific finding based on non-personal,

aggregated data that placed no person or business at jeopardy or at risk. At all times the

Code of Ethics (2008) from the Academy of Management and the Capella University

Institutional Review Board (IRB), was used to guide the actions taken in this research

and formed the basis of the ethical measures used to monitor those actions.

www.manaraa.com

 127

The results of this study might point to changing company policies, directions, or

decisions in programming methods. The results may also suggest changes in

philosophical as well as operational methods for software engineering practices. One of

the reasons for this study was that business leaders and Information Technology

Managers continue to question the value of paired programming, especially after its very

enthusiastic introduction to the industry in 1999. Some businesses could view the results

of this study as a reason to change their software development practices. In other cases,

business and technology leaders might leverage this study to make critical organizational

and financial decisions as well as techno-process oriented decisions. An underlying

premise within this study is the recognition and encouragement of change and forward

movement within the software development community, especially concerning

programming practices that create more efficient and effective results for businesses.

Through this study, scientific information and statistical analysis from industry-based

field data can provide a result that may be used by software development managers for

any business looking to improve its software development practices. This study takes all

reasonable precautions to provide data and information in a random, non-biased manner.

All elements of data gathering, retention, and analysis are open and demonstrative for

easy and accurate replication and review.

www.manaraa.com

 128

CHAPTER 4. RESULTS

There are a number of factors that affect the use and adoption of any practice

within software engineering. This is no different for the practice of paired programming.

Software engineering practitioners continue to search for faster, more reliable coding

methods. A significant amount of studies as demonstrated in Chapter 2, herein, reveal the

industry’s concern and preoccupation with improving these methods. Practices within

these methods continue to reflect the need for more effective and efficient ways to make

coding easier and more useful for developers. The scope of this study has been limited to

a focus on paired programming and individual programming. Using The Technology

Acceptance Model as a framework for executing a preliminary research study, this study

set out to identify the correlations between key factors and provide data that might initiate

and support a broader study into the effect of paired programming and its ability to

support faster, flawless code engineering (Rigopoulos & Askounis, 2007).

The study was conducted via an Internet Survey engine as described in the

section, Using an eSurvey Engine, in Chapter 3 above. Emails were sent inviting possible

respondents to take the survey, engaged through a web-link in the invitation email. The

actual survey questions and their format, found in The Appendix, were used exactly as

they appear. However, in the eSurvey Engine, it was possible to stack the construction of

the questions for paired programming and individual programming in a single question

packet. This does not violate basic survey technique of asking multiple questions within a

single question, but rather, provides an efficient method for collecting similar ideas

www.manaraa.com

applied to two variable constructs (see Figure 9). Each construct also had its own

measurement collection line (scale), creating two single questions with two single data

collection points. The result of this form of economizing the survey’s real estate, helped

to provide a cleaner look and feel as well as an instrument with only 14 question packets.

A Sample Question from the eSurvey

2. Using this software development practice would improve my software development
group’s job performance.

Extremely

Likely
Quite
Likely

Slightly
Likely Neither Slightly

Unlikely
Quite

Unlikely
Extremely
Unlikely

Paired
Programming

Extremely

Likely

Quite
Likely

Slightly
Likely

Neither

Slightly
Unlikely

Quite

Unlikely
Extremely
Unlikely

Individual
Programming

Extremely

Likely

Quite
Likely

Slightly
Likely

Neither

Slightly
Unlikely

Quite

Unlikely
Extremely
Unlikely

Figure 9. This sample shows how a question from the eSurvey used in this study was
displayed with two complete questions and measurement lines within one question
packet.

Survey Response Results

Email listings were obtained from BizExUSA.Com in block amounts of 500 non-

opt-in email addresses. These emails were sorted for the general value of software

development lead, supervisor, manager, director, vice-president, CTO, CIO, and

President of a software development or applications development organization. The

related possible respondent pool based on this sort was 47,351. A test of 500 emails

revealed that approximately 62.3% of these emails were filtered through a Network

Security Scan (NSS) as possible spam and 22.6% were no longer valid emails as reported

by the user’s SMTP server. 4,500 emails were acquired (the original 500 used for testing

 129

www.manaraa.com

 130

email passage were not included). Of the 4,500 emails, 1,131 appeared to pass through

filtering and be validly constructed and representative emails. Of the emails sent to 1,131

valid email addresses, 212 responses were received during the three-week survey period.

The initial response rate was 18.7%. 49 surveys were not satisfactorily completed (more

than three questions from each of the sections were not completed), seven surveys were

returned blank, and 53 were completed by non-software development management

respondents (see question 31 in The Appendix). 103 surveys met the research criteria and

were satisfactorily completed. This resulted in a final survey response rate of 9.12%.

Analyzing the Response Rate

The response rate based on the original e-listings was hampered by the

randomness of the survey design and non opt-in of the list population. An opt-in is the

consent by possible respondents to have their email address used in marketing or survey

listings, usually for the purpose of a particular subject inquiry. This means that the

respondents would need to have known about the subject and made a decision at some

point to participate in general surveys associated with questions or subjects tuned to

software development management. To provide a sample that was random and not

already tainted toward one of the constructs in the survey, it was necessary to use a

marketing listing that filtered only title. There were no listings found that provided an

opt-in for possible e-survey respondents open to completing questions on software

development practices. Of the 103 respondents to the survey, 49 requested follow-up

information on the results of the survey and 16 responded to the delivery email address

(sender email) with specific questions or request for additional information on the subject

www.manaraa.com

 131

of paired programming. This indicated that those responding to the survey possessed a

genuine interest in the subject, lending credibility to their input through the survey.

Validating the Sample

It is important to question the validity of the sample as a primary step in the

analysis of the research data. This was done by first considering the confidence level.

This is usually 95% for similar research projects (Creative Research Systems, 2010).

Next, the confidence interval was computed based on the sample size and population with

a percentage margin of error. For the research project described herein, the margin of

error was set conservatively at 50%. This yielded a confidence interval of 9.21%. When

calculated with a population of 1130 complete responses, this yielded a valid sample rate,

considering the criteria above, to be a minimum of 103 responses. The formula used to

calculate the sample size and confidence interval is represented by SS = (Z2 X p X (1 –

p)) / C2. Where Z is the value of 1.96 to achieve a confidence level of 95%, p is the

percentage of picking a choice, and C is the confidence interval of 9.21%, which is a

range that is + or – the value of that number. (Creative Research Systems, 2010). The

actual received samples were above 103, thereby confirming the validity of the sample

size used in this research study.

Additional Considerations beyond The Technology Acceptance Model Survey Data

Prior to analyzing the data through the Davis’ Technology Acceptance Model, it

is important to understand the relationship of perceived usefulness and perceived ease of

use on actual usage as influenced by individual differences. This is basic to the survey

that collected the data in this research study and the foundation of the TAM formulae that

will provide a comparative view of usage for the practices of paired and individual

www.manaraa.com

 132

programming. When measuring responses based on individual attitudes and projecting

them into behavior in the present and predicted for the future, there are various

psychological and sociological issues involved in perceived usefulness and perceived

ease of use that must be understood in the interpretation of the data. Three possible

influencing elements should be considered when analyzing individual responses to the

TAM survey.

Three Influencing Considerations on Individual Response Differences

According to Ajzen (1985, 1991), when a person’s behavior is not completely

voluntary, the perceived behavioral controlling element directly and strongly affects the

person’s intentions to behave (and use), over their attitudes and other subjective

influences. Venkatesh and Davis (2000) indicated that perceived ease of use tends to

cancel this out or at least mediate it. Other studies involving Information Technology

practices tend to support the direct effect on individual differences of perceived

behavioral control on the outcome of actual usage and/or predicted use (Igbaria,

Guimaraes, & Davis, 1995; Mathieson, Peacock, & Chin, 2001; Taylor & Todd, 1995).

Another consideration as to why perceived usefulness and perceived ease of use

may only partially affect individual differences with regards to actual usage is that

behavior can be linked to self-identity and this can be a strong driver of behavior. A

person’s perception or self-identity of themselves as being in a particular camp or within

a particular named group directly affects their intentions, even beyond attitudes,

subjective norms, or various types of behavioral control (Sparks & Shepherd, 1992).

Multiple studies confirm this condition (Ajzen, 1991; Armitage & Conner, 1999; Sparks

& Guthrie, 1998). An important study pertinent to technology found that a person’s self-

www.manaraa.com

 133

identity was directly linked to his or her usage of particular technologies and practices

(Speier & Venkatesh, 2002). This study did not use the TAM as a theoretical model,

diluting a more direct comparison and conclusion. Nevertheless, there is sufficient

evidence that indicates above one’s intentions, subjective norms, and behavior, the forces

of self-identity may play a substantive role in usage with only superficial effects from

perceived usefulness and perceived ease of use (Burton-Jones & Hubona, 2005).

This concept is strongly relevant to this study as practitioners of paired

programming may, as indicated in near-term history, follow the New Age of

programming practices linked to popular/current methodologies such as Extreme

Programming. The momentum of those popular methods, giving way to popular practices

may have influenced software development managers to identify with being practitioners

of new methods and practices. The effect of perceived usefulness and perceived ease of

use may have a lesser influence with regards to usage. The survey helps to mitigate this

influence as the social and professional subject norms are reduced through the

anonymous execution of the instrument and its data collection.

Assumptions in the TAM methodology are that behavior is energized through

perceived usefulness and perceived ease of use based on intentions and attitudes about a

thing or practice. Some researchers hold that behavior is more a condition of habitual

occurrence than intentional occurrence, where habits directly affect behavior and usage

beyond the influences of attitudes, intentions, behavioral control, and subjective norms

(Oullette & Wood, 1998; Ronis, Yates, & Kirscht, 1989). Venkatesh and Davis (2000)

found this to be the case for technology. In their study, it appeared that after three months

of using a tool or a practice, the best predictor of usage was an individual’s prior use. As

www.manaraa.com

 134

this study was to look for other influencing elements other than perceived usefulness and

perceived ease of use, these constructs were not a part of that study and were not

compared to other elements such as attitude, subjective norms, and behavior control. It is

still important to note the effect of habit on individual differences as measures toward

current and future usage.

Critics of the TAM noted that when considering human intentions, attitudes, and

influencing external norms, there can be no exact science to predict behavioral

acceptance and usage. The above three elements seem to support that the methodology

has limits and that there are constraints that must be considered in a full analysis of the

data. The ability to predict a finite conclusion of acceptance or lack of acceptance is not

attempted here, nor is it in the many cases of the application of the TAM as a framework

to determine usage. Behavioral acceptance and usage is a continuum of scale and not a

logic gate of decision. This must be considered in the presentation and analysis of the

data presented.

Primary Hypotheses Analysis

An internet eSurvey study was conducted (see The Appendix) in order to test the

research model and confirm or reject the null hypotheses. A web-based questionnaire was

accessed by randomly invited software development managers. That questionnaire was

based on the constructs depicted in Table 5 and used to collect various points of data in

accordance with Davis’ (1989) Technology Acceptance Model. The questionnaire used a

Likert scale ranging from 7 = extremely likely to 1 = extremely unlikely. The two major

constructs were that of paired programming and individual programming. Using the

Davis (1989) survey model for the TAM, the variables engaged in both constructs

www.manaraa.com

 135

included Perceived Usefulness, Perceived Ease of Use, and self-reported usage. A

shortened version of the survey questions are provided in Table 5.

Statistical Analysis

Table 5. Construct Items Applied to the Practice of Paired and Individual Programming.

The Construct Items
I. Perceived Usefulness
1. Using this practice would enable quicker software development
2. Using this practice would improve developer’s job performance
3. Using this practice would increase developer productivity
4. Using this practice would enhance effectiveness of producing code
5. Using this practice would make coding easier for programmers
6. Developers would find this practice useful in software development
II. Perceived Ease of Use
1. Using this practice would enhance the efficiency of producing code
2. Learning and implementing this practice would be easy for my programmers
3. Programmers would find this practice easy in producing desired code
4. Implementing this practice would be clear and understandable to programmers
5. Programmers would find this practice to be flexible and easy to use
6. Programmers would find it easy to become skillful in this practice
III. Behavioral Intention to use
1. Programmers would find this type of practice easy to use
IV. Usage
1. I intend to use this practice for my development group

Hypotheses Analysis for Perceived Ease of Use

The first hypothesis to be reviewed proceeds from the research question that asks

if there are observed differences in perceived ease of use (PEU) between the practice of

paired programming and the practice of individual programming (R1)? Restated, the

hypothesis (Ho1) indicates that the mean score for the perceived ease of use construct

will not be significantly different for paired programmers versus individual programmers

working alone. To test this hypothesis, the results of the mean value produces a 95%

confidence factor that will accept the null hypothesis as correct if the Z calculation is less

www.manaraa.com

 136

than two. If the Z calculation produces a value greater than 1.96, (more than 1.96

standard deviations of separation) then the null hypothesis is rejected.

Table 6. Mean TAM Score Between Paired and Individual Programming for PEU.

Paired Programming Mean
1. Learning/implementing is easy 4.18
2. Easy in producing desired code 4.62
3. Clear and understandable 4.54
4. Flexible and easy to use 4.17
5. Easy to become skillful 4.70
6. Practice that is easy to use 4.33
Average Mean 4.42***
Individual Programming Mean
1. Learning/implementing is easy 5.46
2. Easy in producing desired code 5.15
3. Clear and understandable 5.70
4. Flexible and easy to use 5.53
5. Easy to become skillful 5.55
6. Practice that is easy to use 5.54
Average Mean 5.49***
***p<.001 **p<.01 *p<.05

The mean average for Paired Programming is 4.42 compared to the Individual

Programming mean average of 5.49, a 19.41% difference between the mean variables.

The Pearson correlation coefficient of -1.59 indicates that the relationship between the

variables is somewhat inversely related (when one gets larger, the other gets smaller).

This is consistent with those that form perceived ease of use judgments for Individual

Programming over Paired Programming. Although the possibility of the measure could

be equal, (the respondent could like both), the data reflects otherwise as those selecting

individual programming clearly relegate the selection of paired programming to a lesser

status. Variations in the questions for each construct prove to be tight or highly consistent

amongst themselves with a standard deviation of 0.18 for the individual practice and 0.23

www.manaraa.com

 137

for the paired practice. Individual practice scores are leptokurtic or pile up to a peak

value, whereas the paired practice scores are platykuric or more evenly distributed. This

indicates that the questions are correctly related in tapping perceived ease of use, but the

evidence shows there is a preference toward the individual practice area more so than in

the paired practice area. Skewness also shows a marked disparity between individual

programming and paired programming data.

A Z parametric test was run to determine the statistical significance between the

distributed means. The p value showed significance between the variables with a value of

0.0326. The analysis indicated that there was a 19.41% variation between the variables

mean values with a Z value of 1.845. At the same time, the p value confirmed the

significance of the variables’ relationship to each other. Since the criteria to confirm the

null hypotheses was that there was no significant difference between the variables, and

the calculated Z value was less than 1.96. This fails to reject hypothesis Ho1, in other

words, there is no significant difference in software development managers’ perceived

ease of use for the individual programming practice over the paired programming

practice.

Hypotheses Analysis for Perceived Usefulness

The second hypotheses attempts to address the second research question (R2),

which asks if there are observed differences in perceived usefulness (PU) between the

practice of paired programming and individual programmers working alone. The

hypothesis Ho2 indicates that the mean score of the perceived usefulness construct will

not be significantly different for paired programmers versus individual programmers

working alone. To test this hypothesis, the results of the mean value produces a 95%

www.manaraa.com

 138

confidence factor that will fail to reject the null hypothesis if the Z calculation is less than

1.96. If the Z calculation produces a value greater than 1.96, (more than 1.96 standard

deviations of separation) then the hypothesis Ho2 is rejected.

Table 7. Mean TAM Score Between Paired and Individual Programming for PU.

Paired Programming Mean
1. Efficiency producing code 4.60
2. Enable quicker software development 5.04
3. Improve developer’s job performance 4.55
4. Increase developer productivity 5.04
5. Enhance effectiveness producing code 4.75
6. Make coding easier for programmers 4.75
Average Mean 4.76***
Individual Programming Mean
1. Efficiency producing code 4.74
2. Enable quicker software development 4.35
3. Improve developer’s job performance 4.54
4. Increase developer productivity 4.25
5. Enhance effectiveness producing code 4.55
6. Make coding easier for programmers 4.97
Average Mean 4.56***
***p<.001 **p<.01 *p<.05

The mean average for Paired Programming is 4.76 compared to the mean average

of Individual Programming of 4.56. The Pearson Correlation Coefficient of -0.59

indicates that the relationship between the variables is somewhat inversely related (when

one gets larger the other gets smaller), but at a moderate to slow rate. In this case, the

movement is toward the Paired area. The variance between the constructs is small: 0.02,

indicating a low degree of significant variance. This indicates that both variables would

be considered useful.

Variations in the questions for each construct prove to be tight or highly

consistent amongst themselves with a standard deviation of 0.002 between individual

www.manaraa.com

 139

programming and paired programming. The individual scores are leptokurtic or pile up to

a peak value, whereas the paired scores are platykuric or more evenly distributed as

described above. This indicates that the questions are correctly related in tapping

perceived usefulness, but the evidence shows there is a more evenly distributed value or

preference for specific selections in the Paired area more so than in the individual area,

but only slightly. Skewness also shows a minimal disparity between Individual and

paired practice variables. There is a 4.26% variance between the two constructs with the

paired practice area showing a trend toward a more asymmetrical distribution (see

Statistical Tests Linked to Hypotheses section in Chapter 3 above).

A Z parametric test was conducted to determine the statistical significance

between the distributed means. The p value shows a low but acceptable significance

relationship between the variables with a value of 0.0433. The analysis indicated a Z

value of 1.7141. At the same time, the p value of .0432 confirmed the moderate

significance of the variables’ relationship to each other. Both results for perceived ease of

use and perceived usefulness were independently regressed. The criteria to fail to reject

the null hypotheses were that there was no significant difference between the variables,

and the calculated Z value was less than 1.96. This fails to reject the null hypothesis

(Ho2); in other words, there is no significant difference in software development

managers’ perceived usefulness for the individual programming practice over the paired

programming practice.

The literature indicates that in past studies there was a bias for usefulness among

more seasoned professionals. Their tendency was to see usefulness as a tool in itself, and

not necessarily in comparison with something else. This would be particularly applicable

www.manaraa.com

 140

to software managers, seasoned in the field of applications development, judging the

usefulness of paired versus individual programming. In this case, the paired and

individual programming practices appear to be considered useful. Although the

possibility of the measure could always be equal, the result indicates that in this construct

it is very close.

Hypotheses Analysis for the Correlation of Perceived Usefulness and Ease of Use

The third hypothesis attempts to address research question (R3), which indicates

to what extent is the paired programming practice more acceptable/used than the practice

of individual programmers working alone. The hypothesis (Ho3) indicates that the paired

programming practice will not be significantly perceived to be more used by software

development managers than the individual programming practice. This is determined

through a correlation (of constructs) between the mean scores of the constructs (see

Tables 8 through 9) of perceived usefulness, perceived ease of use, behavioral intention

to use, and self-reported usage; as well as a regression analysis of the effect of perceived

usefulness and perceived ease of use on self-reported usage (see Tables 10 and 11).

The TAM formula as shown in Table 1 is a simple manipulation of the correlation

coefficients between perceived ease of use, perceived usefulness, behavioral intention to

use, and self-reported usage (Davis, 1985, 1989; Rigopoulos & Askounis, 2007). Davis,

Bagozzi, and Warshaw (1989) and Sheppard et al (1988), noted that the addition of

behavioral intention or the self-prediction of use was a significant predictor of future

behavior. Studies by Burton-Jones and Hubona (2005), and Rigopoulos and Askounis

(2007), among others, made a distinction between the psychometrics of behavioral

intention and self-predicted usage. These variables were represented in their survey forms

www.manaraa.com

 141

as separate questions. The behavioral use values and those of self-predicted usage bond to

form a strong predictor of future use. The statistical models below reflect that bond, while

demonstrating the correlational constructs (see Table 10). The paired programming

practice had a non-significant correlation between usefulness and ease of use (0.0136,

p<.01). For paired programming, usefulness was moderately correlated to intent to use

(0.489, p<.03) but was not significantly correlated to usage (0.013, p<.06). Ease of use

was significantly correlated between intent to use (0.637, p<.0001) but was not

significantly correlated to usage (0.050, p<.01). Actual usage showed a statistically

significant correlation (0.647, p<.02).

Table 8. Correlation of Constructs for Paired Programming

Constructs (1) (2) (3) (4)
(1) Perceived Usefulness 1 .014 .489 .413
(2) Perceived Ease of Use .014 1 .638 .050
(3) Behavioral Intention to Use .489 .638 1 .647
(4) Self-Reported Usage .014 .050 .647 1

The TAM Research Model Applied for Paired Programming (see Figure 10)

demonstrates the correlational values (with p values exposed) for the construct of paired

programming. The internal relational values explained above support the resultant value

of a significant correlation between actual usage and the variables of perceived ease of

use, perceived usefulness, behavioral intention to use, and self-reported usage. The data

suggests that there are strong correlational ties between perceived usefulness and usage,

with less of a tie between ease of use and usage. The model indicates that there is a

www.manaraa.com

moderately strong correlation for actual usage (0.647, p<.02) of the paired programming

practice by the data from software development managers.

The TAM Research Model with Correlation Values for Paired Programming

 142

Figure 10. The TAM research model with paired programming correlation values. This
graph shows how the various values derived from the survey data are applied to the TAM
to form a measure of actual usage. Adapted with permission from A TAM framework to
evaluate users’ perception towards online electronic payments (p. 5), by G. Rigopoulos,
and D. Askounis, 2007. Journal of Internet Banking and Commerce, 12(3). Copyright
2007 by the Journal of Banking and Internet Commerce.

The TAM Research Model applied for Individual Programming (see Figure 11)

demonstrates the correlational values (with p values exposed) for the construct of the

individual programming practice. The internal relational values explained above support

the resultant value of a significant correlation between actual usage and the variables of

perceived ease of use, perceived usefulness, behavioral intention to use, and self-reported

usage. The data suggests somewhat different results to that of the paired programming

practice construct.

Perceived
Usefulness

Perceived
Ease of Use

Behavioral
Intention to Use

Actual
Usage 0.0136

<0.01

0.489
<0.005

0.637
<0.0001

0.050
<0.01

0.013
<0.06

0.647
<0.02

www.manaraa.com

 143

Usefulness and ease of use showed a moderately significant correlation (0.289,

p<.0001). There is a stronger correlation between usefulness and intent to use (0.262,

p<.03) and a significant correlation between usefulness and usage (0.542, p<.005). There

is a significant correlation between ease of use and intent to use (0.845, p< 0001) and a

non-significant correlation between usefulness and usage (0.037, p<.005). The model

indicates that there is a significantly strong correlation between intent to use and actual

usage (0.954, p<.0001)

Table 9. Correlation of Constructs for Individual Programming

Constructs (1) (2) (3) (4)
(1) Perceived Usefulness 1 .289 .262 .542
(2) Perceived Ease of Use .289 1 .845 .037
(3) Behavioral Intention to Use .262 .845 1 .954
(4) Self-Reported Usage .542 .037 .954 1

The comparison of the paired and individual programming practice models

indicates that the individual programming practice was predicted to be more used than

the paired programming practice. Although the correlational variance is only moderate

(.307) in favor of individual programming, it is nonetheless apparent that there is more

confidence in the future use of the individual programming practice than the paired

programming practice.

www.manaraa.com

Research Model with Correlation Values for Individual Programming

 144

Figure 11. The TAM research model with individual programming correlation values.
The graph shows actual usage survey data applied to the TAM. Adapted with permission
from A TAM framework to evaluate users’ perception towards online electronic
payments (p. 5), by G. Rigopoulos, and D. Askounis, 2007. Journal of Internet Banking
and Commerce, 12(3). Copyright 2007 by the Journal of Banking and Internet
Commerce.

The criteria for rejecting or failing to reject the hypothesis is reflected in Chapter

3, Statistical Tests Linked to Hypotheses. The values found in Figure 10 and 11 are

summarized in Table 10. The results, with a 95% confidence factor, would fail to reject

the null hypothesis if the usage calculation was less than 1.96. If the calculation produces

a value greater than 1.96 (i.e. significantly perceived to be more used – a value of more

than two standard deviations of separation), then the null hypothesis would be rejected.

Table 10. Correlations Between Perceived Usefulness, Perceived Ease of Use, and Self-
Reported Usage

 Correlation
 Usefulness Ease of Use Ease of Use Pooled
 & Usage & Usage Usefulness Usage
Paired Practice .013 .050** .014* .647*

Individual Practice .542** .037** .289*** .954***
***p<.001 **p<.01 *p<.05

Perceived 0.262
Usefulness

Perceived
Ease of Use

Behavioral
Intention to Use

Actual
Usage

0.289
<0.0001

<0.0001

0.845
<0.0001

0.037
<0.005

0.542
<0.005

0.954
<0.0002

www.manaraa.com

 145

The null hypothesis, Ho3, indicated that the paired programming practice would

not be significantly perceived to be more used by software development managers than

the individual programming practice. The TAM model resulted in a value for the paired

programming practice of 0.647 (p<.05) and a value for the individual programming

practice of 0.954 (p<.001). Paired programming was not perceived to be more used, as

the data indicated that it was actually less used than the individual programming practices

by a moderate amount. Although there is a slight difference between the usage values,

favoring the individual practice, the criterion to fail to reject the null hypothesis is upheld.

Conceptually this is consistent with the opportunity of choice by the respondents for both

practices. The data supports a stronger perceived usefulness for the individual

programming practice, but only by a non-significant margin.

Regression Test to Confirm the Effects of Usefulness and Ease of Use on Usage.

In Davis’ study (1989) applied the TAM to charting software use and then used

regression analyses to confirm the effect of perceived usefulness on usage, when ease of

use is controlled or limited. Davis’ significance values were stronger in his study

compared to this study (see Table 11). Here the paired programming practice for

usefulness shows a value of 0.50 and an ease of use value of 0.69 with no significance.

For individual programming, usefulness shows a value of 0.80 and an ease of use value

of 0.88. Both are moderately significant. The regression coefficients calculated for the

paired practice and the individual practice were not significantly different (0.25 and 0.15

respectively). This confirms Davis’ findings, which found that usefulness tends to

www.manaraa.com

 146

mediate the effects of ease of use when applied to usage. Considered in another way,

usefulness contains the behavioral intentions of ease of use.

Table 11. Regression Analysis on the Effect of Usefulness and Ease of Use Usage

 Independent Variables
Usefulness Ease of Use R2

Paired Programming .50 .69 .24

Individual Programming .80** .88* .12
***p<.001 **p<.01 *p<.05

Davis pooled the values of behavioral intent to use and self-reported usage. When

this was done to the data in this study, the values were only slightly moderated by less

than 2%. In this study, behavioral intent to use and self-reported usage was separated to

discern better-detailed values following the study methods of Rigopoulos and Askounis

(2007). The values for regression do not alter the analysis for the confirmation or

rejection of the hypothesis, but rather help to confirm the value of the TAM model for

determining usage from behavior intent (Davis, 1989).

Hypotheses Analysis for the Effect of Business Type on Usage

The fourth hypothesis addressed the research question (R4) that asked how the

type of business relates to the acceptance and usage of the paired programming and

individual programming practices. The hypothesis (Ho4) indicated that there would be no

statistically significant mean difference between a software development managers’

(respondent’s) type of business and the level of acceptance and usage for both the paired

programming and individual programming practices. The test criterion for this hypothesis

was the measure of variation in the calculated standard deviation values between the

variables and the mean standard deviation between each of the constructs. The criteria or

www.manaraa.com

 147

condition that fails to reject the null hypothesis was if the usage standard deviation

calculation between the variables (business types) was less than 1.96 and/or if the mean

usage standard deviation calculation between the two constructs (paired and individual)

was less than 1.96. If the calculations produced a value that was greater than 1.96, (i.e.

two standard deviations of separation with significant variation between the variables

and/or constructs) that condition would reject the null hypothesis.

Table 12. Correlational & Mean Difference Tests for Business-Type Analysis

 Paired Individual Standard
Usage for: Mean Mean Var Deviation
Wholesale Trade 6.00 4.62 0.885 0.941
Retail Trade 5.71 4.29 1.008 1.004
Finance & Insurance 5.71 4.29 1.008 1.004
Manufacturing 4.44 6.33 1.786 1.336
Service Industry 4.10 5.69 1.264 1.124
Transportation & Comms 5.50 5.00 0.125 0.353
Public Admin & Government 5.50 5.00 0.125 0.353

There was no significant difference in usage for most of the business types in

either paired programming or individual programming (see Table 12). The Wholesale

Trade type showed a slight usage variable difference in favor of paired programming

(variance = 0.885). Manufacturing showed a measurable usage variable difference in

favor of individual programming (variance = 1.786) as well as the Service Industry

showed a measureable usage variable difference (variance = 1.264). Yet the mean

standard deviation did not vary significantly between paired and individual practice for

all business types in each construct (0.717 and 0.747 respectively). The analysis indicated

www.manaraa.com

 148

there were no other significant departures or variations from the constructs and the

relationship with the respondents’ business type.

An ANOVA test and a correlational test were conducted for each of the business

types. The values of change and variation were consistent among the business types, with

the exception of manufacturing and the service industries. These business types showed a

higher source of variation between the paired programming and the individual

programming practices, with values favoring the individual programming practice.

Correlational analysis indicated that between the business types for paired programming

there was a standard deviation of 0.717 with (a low) significance (p value) of 0.997,

between paired and individual practices. For individual programming, the standard

deviation among the business types was 0.7474 with (a low) significance (p value) of

0.6673, between the business types for both paired and individual practices.

Table 13. ANOVA Between Paired and Individual Usage and Business Types

ANOVA Summary Count Sum Average Variance
Wholesale Trade 2 10.67 5.335 0.885
Retail Trade 2 10.0 5.0 1.001
Finance & Insurance 2 10.0 5.0 1.001
Manufacturing 2 10.77 5.385 1.786
Service Industry 2 9.79 4.895 1.264
Transport & Comms 2 10.5 5.25 0.125
Public Admin/Gov 2 10.5 5.25 0.125
Paired Usage 7 36.96 5.28 0.514
Individual Usage 7 35.27 5.039 0.559

Source of Variation SS df MS F P-value F crit
Rows 0.438 6 0.073 0.073 0.997 4.284
Columns 0.204 1 0.204 0.204 0.667 5.987
Error 5.997 6 0.999
Total 6.639 13

www.manaraa.com

 149

Given the non-significant data of only a 0.031 variation in standard deviation

between the constructs and no value greater than two standard deviation points between

any of the business type variables, it appeared there was no significant difference in the

means. This was despite some indication that at least two business types (and possibly

more) have some minor differences in favor of the individual programming practice. An

ANOVA test (see Table 13) indicated that the critical value (F-value) was less than the

critical test value (4.283 < 5.996). This fails to reject the null hypothesis and concludes

there are no statistically significant differences between the pair of means. Additionally,

the p value (P<.667) was more than the significance level (α = .05), providing another

confirmation of the (Ho4) null hypothesis (Snedecor & Cochran, 1967).

Hypotheses Analysis on the Effect of Software Development Manager Experience on
Usage

The fifth hypothesis addressed research question (R5), that asked if there is a

relationship between a software development manager’s development experience (in

years by range) and their acceptance and use of the paired programming and individual

programming practices. The null hypothesis (Ho5) indicated that there was no

statistically significant mean difference or variation between a software development

manager’s development experience (in years) and the level of their acceptance and usage

of the paired programming and individual programming practice.

The literature provides an understanding of paired programming as a practice that

is representative of a new arena of software development. As a part of the Agile

programming movement, the Extreme Programming methodology challenges legacy

forms of standard or individual programming, providing various alternatives to producing

www.manaraa.com

 150

cleaner code at a more rapid and accurate rate. The paired programming practice is just

one of many new alternative tools within the application engineering area. Whether these

new practices are used may have a direct relationship with the experience level of the

manager setting the style and method of software engineering. The question remains as to

whether a manager’s programming experience influences the usage of the paired

programming practice as compared to the individual programming practice.

Table 14. Variance & Mean for Usage and Respondent Experience Level

Respondent Paired Individual Mean Variance
Experience Mean Usage Mean Usage Difference
<1 to 2 Years 5.00 6.25 1.25 0.78
3 to 6 Years 5.70 5.50 0.02 0.02
7 to 10 Years 5.05 5.38 0.33 0.05
11 to 14 Years 4.71 5.50 0.79 0.31
15 to 18 Years 4.00 5.78 1.78 1.58
> 18 Years 4.05 5.59 1.54 1.19

The statistics in Table 14 account for behavioral use and actual self-reported

usage for both paired programming and individual programming. The view is two-

dimensional: a) Mean difference between the layers of experience in years (left column),

and b) The mean difference between paired and individual programming practices. The

criterion for the test of the hypothesis was whether a statistically significant variation

occurs between either one or both strata. Through an ANOVA test, the calculated value

(F value) was compared to the critical test value (significance level [p<.05] and degrees

of freedom). If the calculated value is greater than the critical value the null hypothesis is

rejected and a conclusion that there is a significant statistical difference between the pair

of means (Snedecor & Cochran, 1967).

www.manaraa.com

 151

It appears for paired and individual comparisons that although there is some

variation in the first years of programming experience, there is only a slight mean

variance (0.59) in the median year brackets. Between the total program experience

values, the mean difference is no greater than 1.58 and the variation is no greater than

1.56. The mean difference between the experience levels shows an increasing variance

departure in the experience year brackets of 15 to 18 years and >18 years. The variance

skews toward acceptance of individual practice over paired practice in these brackets by

over 70%. This can simply be explained as those with deeper backgrounds in individual

programming felt more comfortable (perceived ease of use) and have had the opportunity

to have successful engagements through that practice (perceived usefulness). They have

formed behaviors that return to that practice as a way of actually producing software

(behavioral usage).

Table 15. ANOVA Between Paired and Individual Programming Experience

ANOVA Summary
Groups Count Sum Average Variance
Paired Experience 6 28.51 4.751667 0.421817
Indiv. Experience 6 34 5.666667 0.099347
ANOVA Source of Variation
 SS df MS F P-value F crit
Between Groups 2.511675 1 2.511675 9.638725 0.011162 4.964603
Within Groups 2.605817 10 0.260582
Total 5.117492 11

Since the calculated value (see Table 15) is greater than the critical value (9.6387

> 4.9646) and the p value equals .0112, which is less than the significance level threshold

(p<.05); the null hypothesis (Ho5) is rejected and the conclusion is that there is a

www.manaraa.com

 152

statistically significant difference between the pair of mean usage for paired and

individual programming.

A Review of Data Analysis and Hypotheses Support

A review of the support for or lack of support for the null hypotheses, in this

study, is found in Table 16. The rationale of the research was generally to determine if

paired programming was or could be predicted to be used more as a software

programming practice than the individual programming practice. To understand the term

more, a statistically significant difference or variance between the responses for paired

programming and individual programming was sought. The data applied to statistical

tests against the five hypotheses indicated some difference (see Table 13 and 14), but in

many cases, not statistically significant.

Table 16. Review of Hypotheses Conclusions

Tag Hypothesis Result
Ho1 The mean TAM score of the perceived ease of use construct will

not be significantly different for paired programmers versus
individual programmers working alone.

Failed to
reject

Ho2 The mean TAM score of the perceived usefulness construct will
not be significantly different for paired programmers versus
individual programmers working alone.

Failed to
reject

Ho3 The paired programming practice will not be significantly
perceived to be more used by software development managers
than the individual programming practice.

Failed to
reject

Ho4 There will be no statistically significant mean difference between
a software development managers’ (respondent’s) type of
business and the level of acceptance and usage for both the
paired programming and individual programming practice.

Failed to
reject

Ho5 There is no statistically significant mean difference or variation
between a software development manager’s development
experience (in years) and the level of their acceptance and usage
of the paired programming and individual programming practice.

Rejected

www.manaraa.com

 153

The literature review in Chapter 2 outlines a significant positioning of paired

programming as a major tool in software improvement practices. The data does not

support the excitement expressed in the literature. The data also indicates that paired

programming is a practice that is used, even though not necessarily, as much in some

cases as individual programming. The significance of this finding is that paired

programming has already taken a place in the list of practices software development

managers use to engineer software. The data suggests that paired programming has not

taken a lead role over individual programming yet, contrary to much of the literature

currently available and despite studies indicating that using the paired programming

practices yields more efficient and effective results compared to individual or waterfall

type programming practices. A better understanding of this finding is described in

Chapter 5.

www.manaraa.com

 154

CHAPTER 5. DISCUSSION, IMPLICATIONS, RECOMMENDATIONS

The objectives of this research study were to focus on providing an empirical

basis on which practitioners, namely software development managers and business

leaders with engaged software development resources, might decide to adopt or not adopt

the practice of paired programming as a software development practice. Sheil (1981)

stated the foundation of this study’s nature clearly, “Most innovations in programming

languages and methodology are motivated by a belief that they will improve the

performance of the programmers who use them” (p. 101). The research within this study

attempts to answer the question as to whether the belief that paired programming as a

practice within the Extreme Programming methodology, is perceived to improve the

performance of programmers through its usage by software development managers as a

practice of choice in their development practice environments.

Discussion

A review of the literature indicates that there has not been even a moderate

amount of study on the Agile software methodologies, specifically Extreme

Programming and its practices. Further, those studies in paired programming and the

associated literature provided little in structured methodology to ascertain the predicted

behavior and/or usage by those contemplating its employment in their organizations.

Bahli and Zeid, (2005), indicated The Technology Acceptance Model (TAM) created by

Davis’ (1989) provided a structured methodology in which to study Extreme

www.manaraa.com

 155

Programming. Their study reflected the move and experiences of a Canadian company as

it moved from the Waterfall or Individual programmer methodology to the Extreme

Programming methodology. They raised the question and called for further research in

this area of programming practices. The activities in this study have focused on the next

iteration on that line of research by applying the TAM to the practice of paired

programming, in an attempt to understand the possible usage values between this practice

and that of the practice of individual (waterfall) programming.

Davis’ study conducted two experiments, one in an internal lab setting using

respondents familiar with the practices being measured. The other was external using

random surveys and responses. The data was compared, correlated, and even pooled to

discern the relative strength of the TAM as a tool. Davis determined that the external

measures were stronger for external data collection. This coincides with questions

concerning related subject research in Extreme Programming, specifically in studies

related to paired programming. Many of the studies conducted were done in laboratory

settings with graduate students familiar with the practice. Random practitioner metrics

were not always used, lending a somewhat questionable result, especially to critics of the

practice. A random field study of actual practitioners was needed to take the next steps as

a contribution to the body of knowledge on Extreme Programming practices and in

determining if paired programming is a behavior that is or might be used by software

development managers (practitioners), especially when compared to the possible use of

individual programming practices.

www.manaraa.com

 156

Review of the Findings

The first hypothesis considered the effect of The Technology Acceptance Model

construct, perceived ease of use, between the paired programming and individual

programming practices. The data suggested that the perceived ease of use construct was

relevant to both practices. The data also suggested that there was no statistically

significant difference between the practices, although there were slight variations

favoring the individual programming practice. This is counter to the literature that

indicated the paired programming practice was easier and possibly more popular to use

than traditional waterfall or individual programming practices. It does not appear this is

true for managers that control the practices used in their software engineering

environments. Even though there is a slight difference in the correlation between paired

and individual programming practices, both values show no significant difference. This

strongly suggests that software programming managers feel that they can use both

practices, but favor the individual programming practice.

The second hypothesis considered the effect of The Technology Acceptance

Model construct, perceived usefulness, between the paired programming and individual

programming practices. The data suggested that the perceived usefulness construct was

relevant to both practices. The data also suggested that there were no statistically

significant differences between correlations of the practices. Davis indicated that, “One

of the most significant findings is the relative strength of the usefulness-usage

relationship compared to the ease of use-usage relationship” (1989, p. 333). The data

confirms this, as perceived usefulness is strong for both constructs with very little

variance between them. Yet in a choice of paired versus individual programming

www.manaraa.com

 157

practices, the data indicated that programming managers found both practices useful with

a slight tendency to favor the individual programming practice over the paired

programming practice. Despite the strong sense of programming capability for the paired

programming practice reflected in the literature, there appears to be no over-riding

emphasis by programming managers toward that practice over the individual

programming practice.

The third hypothesis considered the effect of The Technology Acceptance Model

framework and structured methodology between the paired programming and individual

programming practices. This framework correlated the values of the constructs of

perceived ease of use and perceived usefulness for both practices as well as self-reported

usage. The data suggested that this framework was relevant to both practices. The data

also suggested that there was a positive usage relationship between both perceived ease

of use and perceived usefulness, especially with the individual programming practice.

There was a slight to moderate favor toward the individual programming practice by

respondents, than toward paired programming. This was despite the promotion of paired

programming as a more efficient and effective practice indicated by the literature.

The fourth hypothesis considered the correlational effect of The Technology

Acceptance Model output of usage for both paired and individual programming practices

and their relationship to the respondent’s business type. The output of the TAM when

correlated with the values of usage and the business type of the respondents indicated that

there was no statistically significant difference between the usage values and the business

type. There was also no statistical difference between the mean values of business types

and the two practices. Upon further investigation, there appeared to be some slight

www.manaraa.com

 158

variances between the business type of Manufacturing (toward individual programming)

and Wholesale Trade (toward paired programming). The data suggested that there is a

slight effect of the business type to usage. The effect is not significant and the variations

fall within recognized business types that coincide with one particular programming style

historically. For example, when the forms of programming used for manufacturing are

made up of complex, structured applications usually engaged through waterfall-type

and/or highly structured programming processes. Conversely, Wholesale Trade is made

up of rapidly changing applications, especially web based applications that range from

point of sale processing to electronic payment applications. These forms of applications

are more related to the iterative style of the paired programming practice. Overall, the

data suggest there is no appreciable link between the respondent’s type of business and

their usage of paired or individual programming practices.

The fifth hypothesis was based on a correlation of the relationship of the

development managers’ programming background with their response to usage for both

paired and individual programming practices. It is assumed that software development

managers carry their experience forward from the beginning of their programming

experience to the point where their managerial duties influence designating a software

practice in their areas of influence. The data suggested that experience did play some

slight role in the influence of using individual programming for those respondents with

15 years of experience and more. There was no statistically significant difference for that

period or for the other periods as well. This seems to be consistent with the logical

connection that Agile methods, especially Extreme Programming and the various

practices that are employed, did not exist 15 years ago. Those with shorter experience

www.manaraa.com

tenure would have experienced Agile-programming methods in their internships and

basic training. Those with 15 or more years would not have had this experience in their

basic or formative training. They would also have had several years of experience in

traditional programming methodologies prior to the advent of Agile. There was a

significant statistical difference in the data between a respondent’s experience level and

his or her usage of paired or individual programming (see Figure 12). This certainly does

not preclude those with programming tenure greater than 15 years the inability to engage

Agile or Extreme Programming methods, but it does explain the tendency for more

experienced respondents to recognize and rely on traditional programming practices more

than contemporary practices.

Plotting a Manager’s Experience Level to Practice Usage

Manager Experience to Usage

0
1
2
3
4
5
6
7

1 to 2 3 to 6 7 to 10 11 to 14 15 to 18 > 18

Years of Experience

Le
ve

l o
f U

sa
ge Series1

Series2

Paired

Individual

Figure 12. This graph shows the divergence in usage levels of either paired or individual
programming practices and the level of experience of software manager respondents. The
level of usage represents the ∑ mean values assigned to the survey question associated
with self-reported usage (see Figure 7 above).

 159

www.manaraa.com

 160

Limitations of the Study

The data within the study has been subjected to psychometric testing and analysis.

There are numerous critics that state the results of such data are general at best and not

representative of scientific or empirical testing (Benbasat & Barki, 2007). At the same

time, the use of the TAM as a means to predict usage based on psychometric responses

has been well documented. The results of the TAM are not meant to establish a single,

unarguable value, but rather a relative descriptor of predicted usage, especially when

compared to an antecedent of some similar analytic quantity.

Davis favored a research study using external validity over an internal (lab)

setting, as a more realistic and empirical manner of observing psychometric patterns and

empirical associations (1989). Although, in this study, a single external user population

was used, that population was questioned about two antecedent variables (paired

programming and individual programming). Not totally unlike Davis’ study of two to

four variables (three various chart applications and the pooling of the three to make up a

fourth variable), this is still a limited sample of empirical measure. A more focused

choice on whether to use or not use paired programming could have been designed to

extend the behavior intention of the respondent to a clearer selection. Although the

comparison of paired programming and individual programming are antecedent, they are

not mutually exclusive. The choice of either-or is supplemented with a both, which could

confuse or even obfuscate the results. The survey tool could have forced a choice

between paired and individual programming on the same scale line. Alternatively, a

question could have been asked: “To what extent is one practice used over the other?”

Where this may create an empirical conundrum, is the practitioner’s reality where both

www.manaraa.com

 161

practices are actually present. Both are capable of being used, they are not mutually

exclusive, and both have properties of success (perceived usefulness and perceived ease

of use).

Another limitation includes the sampling of typical software development

managers and their attitudes, behaviors, and predicted usage of one or both of the

practices. It is possible that the assumption that the typical software managers’ ability to

dictate the method of programming and the practices employed in his or her company

might be too liberal. Some organizations may already have decided this within a broader,

more corporate strategy. In other cases, the style and methods used may be dictated by

business rules or corporate agreements. In this case, the measure of behavioral intentions

and usage are not linked and therefore invalid as a respondent measure. To solve this

possible problem, a follow up questionnaire may be used to validate the respondent’s

environment and conditional membership in the sample group.

An additional limitation should be considered in the working definition of paired

versus individual programming practices. Paired programming in its current and past

state has been well defined. Its activities and tasks, albeit somewhat general in nature, are

well accepted and tightly understood by most practitioners. Individual programming

practices are varied and widely defined. Software engineering in assembly-based

languages through C# language could all be applied to the individual programming

practice if the code was implemented from a cascade or waterfall approach. Individual

programming can be construed to mean a systematic process versus an iterative approach

as is the case in paired programming. Although many would accept this distinction, the

www.manaraa.com

 162

exactness of the respondents’ consideration of this distinction cannot be verified by the

processes used in this study.

The research represented here does not overcome the issues presented by

Arisholm et al (2007). These issues represented: (a) Differences in the sample population

(the types and experiences of software development managers), (b) Possible variation in

types of business environments represented (not to be confused with the business type or

general business line categorized in hypothesis 4), (c) Different methods of addressing

the variable constructs (paired programming is specific whereas individual programming

or waterfall programming encompasses a wide range of practice specifics), and (d) The

variation in the complexity of the tasks that framed the respondent’s opinion and

behavioral intentions for usage. As Arisholm et al (2007) stated, “In light of existing

research in software engineering and social psychology we expected that system

complexity and programmer expertise would have a significant impact on when and how

[Paired Programming] is beneficial compared with individual programming” (p. 65).

It should be noted that the original TAM model, or the TAM I model, was used in

this study. There are more contemporary and more complex versions of the TAM

including an 18-sectioned model in a unified version as well as a TAM III model. With

these newer models, there is also a significant complexity of both output and design,

rendering them severely inappropriate for this type of study or for any study that seeks to

be practitioner oriented. There are noted (in the literature) limitations to the original

TAM, such as the analysis of only two main constructs and only a couple of independent

variables. There is however, a direct proportion of the number of variables (and

coverage) to the amount of complexity and ability for usefulness on the part of the

www.manaraa.com

 163

business/practitioner. A tool for evaluating predictable usage is not much good if its

complexity and difficulty make calculating and integrating its results near impossible.

Implications

The state of the literature to date shows an overwhelming acceptance of paired

programming as a positive, adjunctive practice that adds effectiveness and quality to the

engineering of software code (Williams, 2000). Various studies have contributed to this

popularity in the vacuum of needed practices that will help mature the software

development industry to engineer better and more reliable code, faster and with greater

accuracy and less cost (Ghezzi, Jazayeri, & Mandrioli, 1991). Studies have attempted to

measure paired programming against various other programming practices to show

positive results when two programmers are paired together at one terminal versus when

programmers work alone. Various percentage increases in output and quality are at the

root of the measurement to show that the investment in two people is better than the

output of two people working by themselves independently (Williams, 2000).

The research questions in this study reflect a challenge to measure empirically the

use of the paired programming and individual programming practice by software

development managers. These measures were processed through a generally acceptable

theoretical model (the TAM). The results do not completely coincide with the literature

trends. Whereas paired programming was recognized in the literature as a popular

practice of some noteworthy accomplishments (and measure), the study results

demonstrated that it was not predicted to be used more than individual programming by

software development managers. There were indications that the business type of the

software development manager did slightly, but not significantly, influence their

www.manaraa.com

 164

acceptance of the paired programming practice. There was evidence that the more

experience the programming manager had, the less likely he or she was prone to

implement paired programming.

Critics of paired programming reported on studies that showed little in the way of

efficiencies and effectiveness gains by the paired programming practice (Nawrocki &

Wojciechowski, 2001). The data from this study would tend to support some of those

findings. It appears there is still much to be studied and a need for tighter empirical

testing standards and with less questionable results.

The implications of the data produced in this study indicate a less popular and less

used practice than the waterfall or individual programmer practice. This does not say that

it is false to state that paired programming produces better quality code or that over

various periods, the investment of two programmers working together at one terminal

will be more productive than two programmers working separately. It does say that

software managers, who make decisions about the type of practices that are employed in

their development environments, tend to continue to favor individual programming

practices over paired programming practices based on their perceived usefulness to a

large extent and perceived ease of use to a moderate extent. The data collected and

analyzed here also indicates that the experience level of the manager plays some role in

the decision to use one practice over another. Very little is indicated in the literature that

considers the manager’s experience level as a controlling variable in the success or

adoption of paired programming over other practices.

There is significant attention given in the literature to a programmer’s experience

as a key to the success and productivity output for paired programming versus individual

www.manaraa.com

 165

programming practices. The literature suggests that early training in paired practices

yields a more productive pairing partner. It also indicates that productivity and

effectiveness increase as the experience level of the programmer increases. The data in

this study confirms that the more experienced the development manager, the more the

tendency is to select individual programming over paired programming, especially after

15 years or greater of programming experience. The data demonstrates that the more

experience a development manager has, the greater the likelihood he or she will use

individual programming practices. This may change over time. Follow-up studies are

highly recommended to monitor the possible shift of usage should that occur over the

next several years.

The challenge of the data in this study compared to the direction of the literature

is evident. Well-published and popular contributors to software development maturity

have supported the more progressive moves to radically different practices in order to

thwart the growing tide of disappointment over software engineering’s lack of

productivity and success. Yet it appears that despite the charged, popular environment,

software development managers are not readily accepting this popular movement with

abandon.

The data and analysis drawn from the research in this study also points to the

successful use of The Technology Acceptance Model as both a template of analysis and a

method by which a technology practice can be evaluated for predictable usage. Despite

the other forms of the TAM and other technology acceptance models available, the Davis

1989 model still appears to be the most basic and seminal model available.

www.manaraa.com

 166

Recommendations

Future research is needed to extend the sampling of usage for paired and

individual programming practices and determine the usage and acceptance at various

levels of software development management. Additional research is needed to bridge an

empirical understanding between the usage prediction of the software development

manager and the acceptability/use of paired programming, individual programming, or

other form of a software coding practice. Additional research is also needed in comparing

the paired programming practice with other practices (there are 12 practices just within

the Extreme Programming methodology). These results would yield a measure that might

also serve as a controlling factor in understanding how other practices are considered or

used to a greater or lesser extent than paired programming. Ghezzi, Jazayeri, & Mandrioli

(1991), stated:

Successful software engineering requires the application of engineering principles
guided by informed management. The principles must themselves be rooted in
sound theory. While it is tempting to search for miracles and panaceas, it is
unlikely that they will appear. The best course of action is to stick to age-old
engineering principles. There simply are no “silver bullets.” (p. 33)

The purpose and goal of this research, as well as similar studies, is to seek an aid

for software development managers to find better practices that will support their effort to

produce code that is more reliable and can be produce in a cost efficient and timely

manner. The future challenges remain significant, and it is only through continued

investigation and research will greater progress be made toward this goal.

www.manaraa.com

 167

REFERENCES

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J. (2003). New directions on
Agile methods: A comparative analysis. Proceedings of the International
Conference on Software Engineering, Copenhagen, Denmark.

Academy of Management. Code of Ethics. Retrieved November 12, 2008 from

http://www.aomonline.org/aom.asp?id=268

Agarwal, R. & Prasad, J. (1999). Are individual differences germane to the acceptance of

new information technologies? Decision Sciences, 30(2), 361-391.

Ajzen, I. & Fishbein, M. (1980). Understanding attitudes and predicting social behavior.

Englewood Cliffs, NJ: Prentice-Hall.

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl &

J. Beckman (Eds.), Action-control: From cognition to behavior. Heidelberg,
Germany: Springer.

Ajzen, I. (1987). Attitudes, traits, and actions: Dispositional prediction of behavior in

personality and social psychology. In L. Berkowitz (Ed.), Advances in
experimental social psychology (Vol. 20, pp. 1-63). New York: Academic Press.

Ajzen, I. (1991). The theory of planned behavior. Organization Behavior and Human

Decision Processes, 50, 179-211.

Ajzen, I. (2002). Perceived behavioral control, self-efficacy, locus of control, and the

theory of planned behavior. Journal of Applied Social Psychology, 32, 665-683.

Ajzen, I. (2005). Attitudes, personality and behaviour, 2nd ed. Berkshire, Great Britain:

McGraw-Hill Education.

Alavi, M. (1984, June). An analysis of the prototyping approach to information systems

development. Communications of the ACM, 27(6), 556-563.

Almutairi, H. (2007). Is the ‘Technology Acceptance Model’ universally applicable?:

The case of the Kuwaiti ministries. Journal of Global Information Technology
Management, 10(2), 57-80. Retrieved May 6, 2008, from ABI/INFORM Global
database. (Document ID: 1400763801).

www.manaraa.com

 168

Anderson, N. S. & Olsen, J. R. (1985). Methods for designing software to fit human
needs and capabilities: Proceedings of the Workshop on Software Human Factors.
Washington D.C.: National Academy Press.

Arisholm, R., Gallis, H., Dybå, T., & Sjøberg, D. I. K. (2007). Evaluating pair

programming with respect to system complexity and programmer expertise. IEEE
Transactions on Software Engineering, 33(2), 65-86.

Arisholm, R. & Sjøberg, D. I. K. (2003). A controlled experiment with professionals to

evaluate the effect of a delegated versus centralized control style on the
maintainability of object-oriented software. Technical Report 2003-6, Simula
Research Laboratory. Retrieved August 10, 2008 from
http://www.simula.co/erika.

Armitage, C. J. & Conner, M. (1999). The theory of planned behavior: Assessment of

predictive validity and perceived control. British Journal of Social Psychology,
38, 35-54.

Baehti, P., Gehringer, E., & Stotts, D. (2002). Exploring the efficacy of distributed pair

programming. Proceedings of Extreme Programming and Agile Methods –
XP/Agile Universe 2002, Second XP Universe and First Agile Universe
Conference, Chicago, IL, 208-220.

Bagozzi, R. P. (2007). The legacy of The Technology Acceptance Model and a proposal

for a paradigm shift. Journal of the Association for Information Systems, 8(4),
243-254. Retrieved May 6, 2008, from ABI/INFORM Global database.
(Document ID: 1316739731).

Bahli, B. & Zeid, E.S.A. (2005) Information and Communications Technology 2005:

Enabling Technologies for the New Knowledge Society. Proceedings of the ITI
3rd International Conference, Cairo, Egypt, 75-87.

Baker-Eveleth, L., Eveleth, D. M., O’Neill, M., & Stone, R. W. (2006). Enabling laptop

exams using secure software: Applying The Technology Acceptance Model.
Journal of Information Systems Education, 17(4), 413-420. Retrieved May 6,
2008, from ABI/INFORM Global database. (Document ID: 1211107121).

Beck, K. (1999). Extreme programming explained: Embrace change. San Francisco:

Addison-Wesley.

Beck, K. (2000). Extreme programming explained. New York: Addison Wesley

Longman.

Beck, K. & Fowler, M. (2001). Planning extreme programming. New York: Addison-

Wesley.

www.manaraa.com

 169

Bem, D. J. (1967). Self-Perception: An alternative interpretation of cognitive dissonance

phenomena. Psychological Review, 74, 183-200.

Benamati, J. & Rajkumar, T. M. (2002). The application development outsourcing

decision: An application of the technology acceptance model. The Journal of
Computer Information Systems, 42(4), 35-43. Retrieved May 6, 2008, from
ABI/INFORM Global database. (Document ID: 147588681).

Benbasat, I. & Barki, H. (2007). Quo vadis, TAM? Journal of the Association for

Information Systems, 8(4), 211-218. Retrieved May 6, 2008, from ABI/INFORM
Global database. (Document ID: 1316739691).

Berenson, S. B., Slaten, K. M., Williams, L., & Ho, C. (2004, March). Voices of women

in a software engineering course: Reflections on collaboration. ACM Journal on
Educational Resources in Computing, 4(1).

Berenson, S. B., Williams, L., Slaten, K. M. (2005). Using pair programming and Agile

development methods in a university software engineering course to develop a
model of social interactions. Crossing Cultures, Changing Lives Conference,
Oxford, United Kingdom.

Bevan, J., Werner, L., & McDowell, C. (2002). Guidelines for the use of pair

programming in a freshman programming class. In the 15th Conference on
Software Engineering Education and Training. (pp. 100-107), Covington, KY.

Boehm, B. W. (1981). Software engineering economics. Englewood Cliffs, NJ: Prentice-

Hall.

Bowen, W. (1986, May). The puny payoff from office computers. Fortune, 20-24.

Braught, G., Eby, L. M., & Wahls, T. (2008, March). The effects of pair programming on

individual programming skill. Proceedings of the SIGCSE 2008, 200-204,
Portland, Oregon.

Brodie, Leo (1984) Thinking Forth. New York: Prentice-Hall.

Bryant, S. (2004). Double trouble: Mixing qualitative and quantitative methods in the

study of eXtreme programmers. Proceedings of the VL/HCC, Rome, Italy, 55-61.

Bryant, S. (2005). Rating expertise in collaborative software development. Proceedings

of the Paired Programming Information Group, Brighton, UK, 19-29.

Bryant, S., Romero, P., & duBoulay, B. (2005, November 6-9). Pair programming and

the re-appropriation of individual tools for collaborative programming.

www.manaraa.com

 170

Proceedings of ACM Group ’05 Convention, (332-333). Sanibel Island, Florida,
USA,.

Budd, R. I. (1987). Response bias and the theory of reasoned action. Social Cognition,

5(2), 95-107.

Burton-Jones, A. & Hubona, G. S. (2005). Individual differences and usage behavior:

Revisiting a technology acceptance model assumption. The Data Base for
Advances in Information Systems, 36(2), 58-77.

Campbell, D. T. & Fiske, D. W. (1959, March). Convergent and discriminate validation

by the Multitrait-multimethod matrix. Psychological Bulletin, 56(9), 81-105.

Canfora, G., Cimitile, A., DiLucca, G. A., & Visaggio, C. A. (2006). How distribution

affects the success of pair programming. International Journal of Software
Engineering and Knowledge Engineering, 6(2), 293-313.

Cao, L. & Ramesh, B. (2008). Agile requirements engineering practices: An empirical

study. Journal of IEEE Software, 25(1), 60

Carmel, E. & Agarwal, R. (2001). Tactical approaches for alleviating distance in global

software development. IEEE Software, 18(2), 22-29.

Chaffey, D. (1998). Groupware, workflow and intranets. Boston, MA: Digital Press.

Chaparro, E. A., Yuksel, A., Romero, P., & Bryant, S. (2005). Factors affecting the

perceived effectiveness of pair programming in higher education. Proceedings of
the Pair Programming Information Group, Brighton, UK, 5-18.

Chau, P. Y. K. (1996). An empirical assessment of a modified technology acceptance

model. Journal of Management Information Systems, 13(2), 185-204. Retrieved
May 6, 2008, from ABI/INFORM Global database. (Document ID: 10578717).

Chong, J. & Hurlbutt, T. (2007). The Social dynamics of pair programming. Proceedings

of the 29th International Conference on Software Engineering (ICSE’07)
(Document ID # 0-7695-2828-7/07).

Ciolkowski, M. & Schlemmer, M. (2002). Experiences with a case study on pair

programming. First International Workshop on Empirical Studies in Software
Engineering, Finland.

Clegg, C. W. (1994). Psychology and information technology: The study of cognitions in

organizations. British Journal of Psychology, 85, 449-477.

www.manaraa.com

 171

Clegg, C. W., Waterson, P. E., & Axtell, C. M. (1996). Software development:
Knowledge-intensive work organizations. Behavior & Information Technology,
15(4), 237-249.

Cliburn, D. (2003). Experiences with pair programming at a small college. The Journal of

Computing in Small Colleges, 19(10), 20-29.

Cockburn, A. & Williams, L. (2000). The costs and benefits of pair programming, in

Extreme Programming and Flexible Processes. In Software Engineering (XP
2000), Cagliari, Sardinia, Italy, New York: Addison Wesley.

Cockburn, A. & Williams, L. (2001). The costs and benefits of pair programming. In G.

Succi & M. Marchesi (Eds.), Extreme Programming Examined, Boston: Addison
Wesley.

Compeau, D. & Higgins, C. (1995). Computer self-efficacy: Development of a measure

and initial test. MIS Quarterly, 19(2), 189-211.

Cooper, D. & Schindler, P. S. (2006). Business research methods. New York: McGraw-

Hill/Irwin.

Creative Research Systems (2010). Sample size calculator. The Survey System. Retrieved

January 16, 2010 from http://www.surveysystem.com/sscalc.htm.

Crispin, L. (2006). Driving software quality: How test-driven development impacts

software quality. The Journal of IEEE Software, 23(6), 70-71.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests.

Psychometrika, 16(3), 297-334.

Dasgupta, S., Granger, M., & McGarry, N. (2002). User acceptance of e-collaboration

technology: An extension of the technology acceptance model. Group Decision
and Negotiation, 11(2), 87-100. Retrieved May 6, 2008, from ABI/INFORM
Global database. (Document ID: 403883861).

Davidson, N. (1994). Cooperative and collaborative learning: An integrative perspective.

In J. Thousand, R. Villa, & A. Nevin (Eds.), Creativity and Collaborative
Learning: A Practical Guide to Empowering Students and Teachers. (pp. 13-10),
Baltimore, MD: Paul H. Brookes.

Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user

information systems: Theory and results (Doctoral dissertation, Massachusetts
Institute of Technology-Sloan School of Management, 1985) MIT Management
Library (No. 1721.1/15192).

www.manaraa.com

 172

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of
information technology. MIS Quarterly, 13(3), 319-340.

Davis, F. D. (1993). User acceptance of information technology: System characteristics

user perceptions and behavior impacts. International Journal of Man Machine
Studies, 38, 475-487.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer

technology: A comparison of two theoretical models. Management Science, 35(8),
982-1003.

DeClue, T. (2003). Pair programming and pair trading: Effects on learning and

motivation in a CS2 course. The Journal of Computing in Small Colleges, 18(5),
49-56.

Deming, W. E. (1960). Sample design in business research. New York: Wiley.

DeSanctis, G. (1983). Expectancy theory as an explanation of voluntary use of a decision

support system. Psychological Reports, 52, 247-260.

Donald, I. & Cooper, S. R. (2001). A facet approach to extending the normative

component of the theory of reasoned action. British Journal of Social Psychology,
40, 599-621.

Dorofeev, S. & Grant, P. (2006). Statistics for real-life sample surveys. Melbourne,

Australia: Cambridge University Press.

Ebert, C. & deNeve, P. (2001). Surviving global software development. IEEE Software,

18(2), 62-69.

El Emam, K. & Koru, A. G. (2008, September/October). A replicated survey of IT

software project failures. IEEE Software, 34(4), 84-90.

Erdogmus, H. & Williams, L. (2003). The economics of software development by pair

programmers. The Engineering Economist, 48(4), 283-319.

Fazio, R. H., Lenn, T. M., & Effrein, E. A. (1984). Spontaneous attitude formation.

Social Cognition, 2(3), 217-234.

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An

introduction to theory and research. Reading, MA: Addison-Wesley.

Flor, N. V. (1998). Side-by-side collaboration. International Journal of Human-

Computer Studies, 49, 201-222.

www.manaraa.com

 173

Flor, N. V. (2006). Globally distributed software development and pair programming.
Communications of the ACM, 49(10), 57-58.

Flor, N. V. & Hutchins, E. (1991). Analyzing distributed cognition in software teams. J.

Koenemann-Belliveau, T. Moher, & S. Robertson, Eds. Empirical Studies of
Programmers: Fourth Workshop. Norwood, NJ: Ablex Press.

Gallis, H., Arisholm, E., & Dybå, T. (2003). An initial framework for research on pair

programming. Proceedings of the International Software Engineering Syposium
and Exposition, Italy.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (1991). Fundamentals of Software

Engineering. Englewood Cliffs, NJ: Prentice Hall.

Glassman, M. & Fitzhenry, N. (1976). Fishbein’s subjective norm: Theoretical

considerations and empirical evidence. In B. B. Anderson, (Ed.), Advances in
Consumer Research, Vol. 3. Ann Arbor, MI: Association for consumer Research,
477-483.

Gong, M., Xu, Y., & Yu, Y. (2004). An enhanced Technology Acceptance Model for

web-based learning. Journal of Information Systems Education, 15(4), 365-374.
Retrieved May 6, 2008, from ABI/INFORM Global database. (Document ID:
793505851).

Goodhue, D. L. (2007). Comment on Benbasat and Barki’s “Quo Vadis TAM” article.

Journal of the Association for Information Systems, 8(4), 219-222. Retrieved May
6, 2008, from ABI/INFORM Global database. (Document ID: 1316739701).

Gould, J. D. & Lewis, C. (1985, March). Designing for usability: Key principles and

what designers think. Communications of the ACM, 28(3), 300-311.

Grenning, J. (2001). Launching extreme programming at a process-intensive company.

IEEE Software, 18(6), 27-33.

Hale, J. L., Householder, B.J., & Greene, K.L. (2003). The theory of reasoned action. In

J.P. Dillard & M. Pfau (Eds.), The persuasion handbook: Developments in theory
and practice (pp. 259 – 286). Thousand Oaks, CA: Sage.

Hanks, B. F. (2004). Distributed pair programming: An empirical study. Proceedings of

Extreme Programming and Agile Methods – XP/Agile Universe 2004: 4th
Conference on Extreme Programming and Agile Methods, (pp. 81-91). Calgary,
Canada.

Hanks, B. F. (2006). Student attitudes toward pair programming. Proceedings of the

ITiCSE 2006, Bologna, Italy.

www.manaraa.com

 174

Hartwick, J. & Barki, H. (1994). Explaining the role of user participation in information

systems use. Management Sciences, 40, 440-465.

Hayes, F. (2002). Don’t shrug off bugs. Computerworld, 36(27), 50-51.

Heilberg, S., Puus, U., Salumaa, P., & Seeb, A. (2003). Pair-programming effect on

developers productivity. Fourth International Conference on Extreme
Programming and Agile Processes in Software Engineering (XP2003) (pp. 215-
224). New York: Springer-Verlag.

Herbsleb, J. D. & Grinter, R. E. (1999). Architecture, coordination and distance:

Conway’s law and beyond. IEEE Software, 16(5), 63-70.

Highsmith, J. (1999). Adaptive software development: A Collaborative approach to

managing complex systems. Boston, MA: Dorset House.

Highsmith, J. (2001). The agile manifesto for software development. Retrieved July 16,

2008 from www.agilemanifestor.org.

Highsmith, J. (2002). Agile software development ecosystems. New York: Addison-

Wesley Pearson Education.

Highsmith, J. (2004). Agile project management: Creating innovative products. New

York: Addison-Wesley Professional.

Hilkka, M., Tuure, T., & Matti, R. (2005). Journal of Database Management. Hershey

Journal, 16(4), 21-41.

Ho, C. W., Raha, S., Gehringer, E., & Williams, L. (2005). Sangam: A distributed pair

programming plug-in for eclipse. The Proceedings of the OOPSLA Workshop on
Eclipse Technology eXchange, Vancouver, BC, Canada, 73-77.

Hom, P. W., Katerberg, W. R., & Hulin, C. L. (1979). Comparative examination of three

approaches to the prediction of turnover. Journal of Personality and Social
Psychology, 11, 123-128.

Horton, R. P., Buck, T., Waterson, P. E., & Clegg, C. W. (2001). Explaining intranet use

with The Technology Acceptance Model. Journal of Information Technology,
16(4), 237-249. Retrieved May 6, 2008, from ABI/INFORM Global database.
(Document ID: 667615981).

Hu, P. J., Chau, P. Y. K., Sheng, O. R. L., & Tam, K. Y. (1999). Examining The

Technology Acceptance Model using physician acceptance of telemedicine
technology. Journal of Management Information Systems, 16(2), 91-112.

http://www.agilemanifestor.org/
http://proquest.umi.com.library.capella.edu/pqdweb?RQT=318&pmid=11186&TS=1229919159&clientId=62763&VInst=PROD&VName=PQD&VType=PQD

www.manaraa.com

 175

Retrieved May 6, 2008, from ABI/INFORM Global database. (Document ID:
47523432).

Hulkko, H. & Abrahamsson, P. (2005, May). A multiple case study on the impact of pair

programming on product quality. Journal of the ACM, 495-504.

Humboldt State University Survey Website. (n.d.). Validating a Survey. Retrieved

December 29, 2008 from http://www.humboldt.edu/~storage/surveysite/
survey_validation.html.

Humphrey, W. S. (1995). A discipline for software engineering. New York: Addison-

Wesley.

Igbaria, M., Guimaraes, T., & Davis, G. B. (1995). A path analytic study of individual

characteristics, computer anxiety, and attitudes towards microcomputers. Journal
of Management, 15(3), 373-388.

Ives, B. & Olsen, M. H. (1984). User involvement and MIS success: A review of

research. Management Sciences, 30, 586-603.

Jaccard, J. J. & Davidson, A. R. (1972). Toward an understanding of family planning

behaviors: An initial investigation. Journal of Applied Social Psychology, 2, 228-
235.

Jacobson, N. (2000). Using on-computer exams to ensure beginning students’

programming competency. SIGCSE Bulletin, 32(4), 53-56.

Jacobson, N. & Schaefer, S. K. (2008). Pair programming in Computer Science 1:

Overcoming objections to its adoption. Inroads-SIGCSE, 40(2), 93-96.

Jensen, R. W. (2003). A pair programming experience. CrossTalk, The Journal of

Defense Software Engineering, 16, 22-24.

Johansen, R. & Baker, E. (1984). User needs workshops: A new approach to anticipating

user needs for advanced office systems. Office Technology and People, 2, 103-
119.

Johnson, J. (1994). My life is a failure: 100 things you should know to be a project

leader. Boston, MA: The Standish Group International Press.

Johnson, J. (1995). Chaos: The dollar drain of IT project failures. Application

Development Trends, 2(1), 41-47.

http://www.humboldt.edu/

www.manaraa.com

 176

Karahanna, E. (1993). Evaluative criteria and user Acceptance of end-user information
technology: A study of end-user cognitive and normative pre-adoption beliefs.
Unpublished doctoral dissertation, University of Minnesota.

Keat, T. K. & Mohan, A. (2004). Integration of TAM based electronic commerce models

for trust. Journal of American Academy of Business, Cambridge, 5(1/2), 404-410.
Retrieved May 6, 2008, from ABI/INFORM Global database. (Document ID:
653886231).

Kiercher, M., Jain, P., Corsaro, A., & Levine, D. (2001). Distributed eXtreme

programming. Proceedings of XP2001, Kuala Lumpur, Malaysia.

Klein, G. & Beck, P. O. (1987). A decision aid for selecting among information systems

alternatives, MIS Quarterly, 11(2), 177-186.

Klopping, I. M. & McKinney, E. (2004). Extending the technology acceptance model and

the task-technology fit model to consumer e-commerce. Information Technology,
Learning, and Performance Journal, 22(1), 35-48. Retrieved May 6, 2008, from
ABI/INFORM Global database. (Document ID: 719370511).

Krishnakumar, P. & Sukumaran, N. V. (1997). A model for software development effort

and cost estimation. IEEE Transactions on Software Engineering, 23(8), 485-497.

Larman, C. & Basili, V. (2003). Iterative and incremental development: A brief history.

Computer IEEE Computer Society, 36(6), 47-56.

Lee, H. H., Fiore, A. M., & Kim, J. (2006). The role of the technology acceptance model

in explaining effects of image interactivity technology on consumer responses.
International Journal of Retail & Distribution Management, 34(8), 621-644.
Retrieved May 6, 2008, from ABI/INFORM Global database. (Document ID:
1073444641).

Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information

technology? A critical review of the technology acceptance model. Information &
Management, 30(2), 1-21.

Levy, L. S. (1987). Taming the tiger: Software engineering and software economics. In

H. Ledgard (Ed.), Springer Books on Professional Computing. New York:
Springer-Verlag.

Lindstrøm, L. & Jeffries, R. (2004, Summer). Extreme programming and agile software

development methodologies. Information Systems Management, 21(3), 41-52.

Lui, K. M. & Chan, K. C. C. (2003). When does a pair outperform two individuals?

Proceedings from XP2003, Rome, Italy.

www.manaraa.com

 177

Ma, Q. & Liu, L. (2004). The technology acceptance model: A meta-analysis of empirical

findings. Journal of Organizational and End User Computing, 16(1), 59-72.
Retrieved May 6, 2008, from ABI/INFORM Global database. (Document ID:
533172441).

Manstead, A. S. R. & Parker, D. (1995). Evaluating and extending the theory of planned

behavior. In W. Stroebe & M. Hewstone (Eds.), European Review of Social
Psychology, 6, 69-96.

Margolis, J. & Fisher, A. (2002). Unlocking the clubhouse: Women in computing.

Cambridge, MA: MIT Press.

Markus, M. L. & Keil, M. (1994). If we build it, they will come: Designing information

systems that users want to use. Sloan Management Review, 35(4), 11-25.

Martin, K. & Hoffman, B. (2007). An open source approach to developing software in a

small organization. Journal of IEEE Software, 24(1), 46-53.

Mason, E. J. & Bramble, W. J. (1989). Understanding and conducting research. New

York: McGraw- Hill Publishing.

Mathieson, K., Peacock, E., & Chin, W. W. (2001). Extending the technology acceptance

model: The influence of perceived user resources. The Data Base for Advances in
Information Systems, 32(3), 86-112.

McCloskey, D. W. (2004). Evaluating electronic commerce acceptance with the

technology acceptance model. The Journal of Computer Information Systems,
44(2), 49-57. Retrieved May 6, 2008, from ABI/INFORM Global database.
(Document ID: 538723971).

McCloskey, D. W. (2006). The Importance of ease of use, usefulness, and trust to online

consumers: An examination of the technology acceptance model with older
consumers. Journal of Organizational and End User Computing, 18(3), 47-65.
Retrieved May 6, 2008, from ABI/INFORM Global database. (Document ID:
1060110261).

McCoy, S., Galletta, D. F., & King, W. R. (2007). Applying TAM across cultures: The

need for caution. European Journal of Information Systems, 16(1), 81-90.
Retrieved May 6, 2008, from ABI/INFORM Global database. (Document ID:
1244874171).

McDowell, C., Hanks, B., & Werner, L. (2003). Experimenting with pair programming in

the classroom. Proceedings of the 8th Annual Conference on Innovation and
Technology in Computer Science Education, ACM SIGCSE Bulletin, 35(3), 60-64.

www.manaraa.com

 178

McDowell, C. Werner, L., Bullock, H. E., & Fernald, J. (2006). Pair programming

improves student retention, confidence, and program quality. Communications of
the ACM, 49(8), 90-95.

McGuire, T. W. & Weiss, D. L. (1976). Logically consistent market share models II.

Journal of Marketing Research, 13(3), 296-303.

McKechnie, S., Winklhofer, H., & Ennew, C. (2006). Applying the technology

acceptance model to the online retailing of financial services. International
Journal of Retail & Distribution Management, 34(4/5), 388-410. Retrieved May
6, 2008, from ABI/INFORM Global database. (Document ID: 1044969001).

Meister, D. B. & Compeau, D. R. (2002). Infusion of innovation adoption: An individual

perspective. Winnipeg, Manitoba: Proceedings of the ASAC

Mendes, E., Al-Fakhri, B., & Luxton-Reilly, A. (2006). Investigating pair programming

in a 2nd year software development and design computer science course.
Proceedings of ITiCSE Bulletin, 34(1), 296-300.

Mendes, E., Al-Fakhri, B., & Luxton-Reilly, A. (2006, June). A replicated experiment of

pair-programming in a 2nd-year software development and design computer
science course. Proceedings of the ITiCSE, 108-112, Bologna, Italy.

Money, W. & Turner, A. (2004). Application of The Technology Acceptance Model to a

knowledge management system. Proceedings of the 37th Hawaii International
Conference on System Sciences, Track 8, Honolulu, HI

Montealegre, R. & Keil, M. (2000). De-escalating information technology projects:

lessons from the Denver International Airport. MIS Quarterly 24(3), 417-447.

Mugridge, R. (2008). Managing Agile project requirements with story, test-driven

development. Journal of IEEE Software, 25(1), 68.

Müller, M. M. (2003). Are reviews an alternative to pair programming? 7th International

Conference on Empirical Assessment in Software Engineering, London, United
Kingdom.

Müller, M. M. (2004). Two controlled experiments concerning the comparisons of pair

programming to peer review. Journal of Systems and Software, 78(2), 166-179.

Mykytyn, P. P. & Harrison, D. A. (1993, Spring). The application of the theory of

reasoned action to senior management and strategic information systems.
Information Resources Management Journal, 6(2), 15-27.

www.manaraa.com

 179

Nawrocki, J. & Wojciechowski, A. (2001). Experimental evaluation of pair
programming. Proceedings of European Software Control and Metrics
Conference (ESCOM), London, United Kingdom.

Nilsson, K. (2003). A summary from a pair programming Survey: Increasing quality with

pair programming. Journal of computing in Small Colleges, 18, 57-65.

Nosek, J. T. (1998, March). The case for collaborative programming. Communications of

the ACM, 41(3), 105-108.

Notani, A. S. (1998). Moderators of perceived behavioral control’s predictiveness in the

theory of planned behavior: A meta-analysis. Journal of Consumer Psychology, 7,
247-271.

Oblinger, D. (2003, July/August). Boomers, gen-xers, and millennials: Understanding the

new students. Educause Review, 38(4), 37-47.

Oullette, J. A. & Wood, W. (1998). Habit and intention in everyday life: The multiple

processes by which past behavior predicts future behavior. Psychological
Bulletin, 124, 54-74.

Padberg, F. & Müller, M. (2004). An empirical study about the feel-good factor in pair

programming. Metrics, 10, 151-158.

Pei, Z., Zhenxiang, Z., & Chunping, H. (2007). An extended TAM model for Chinese

B2C websites design. Journal of Global Information Technology Management,
10(1), 51-66. Retrieved May 6, 2008, from ABI/INFORM Global database.
(Document ID: 1262575201).

Perez, M. P., Sanchez, A. M., Carnicer, P. L., & Jimenez, M. J. V. (2004). A technology

acceptance model of innovation adoption: the case of teleworking. European
Journal of Innovation Management, 7(4), 280-291. Retrieved May 6, 2008, from
ABI/INFORM Global database. (Document ID: 748515681).

Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer

acceptance of online banking: an extension of the technology acceptance model.
Internet Research, 14(3), 224-235. Retrieved May 6, 2008, from ABI/INFORM
Global database. (Document ID: 672962091).

Plouffe, C. R., Hulland, J. S., & Vandenbosch, M. (2001). Research report: richness

versus parsimony in modeling technology adoption decisions-understanding
merchant adoption of a smart card-based payment system. Information Systems
Research, 12(2), 208-222.

www.manaraa.com

 180

Pomazal, R. J. & Jaccard, J. J. (1976). An informational approach to altruistic behavior.
Journal of Personality and Social Psychology, 33, 317-326.

Preston, D. (2005). Pair programming as a model of collaborative learning: A review of

the research. Consortium for Computing Sciences in Colleges: Central Plains
Conference, 39-45.

Putnam, L. H. (1978). A general empirical solution to the macro software sixing and

estimating problem. IEEE Transactions on Software Engineering, SE4(4), 345-
357.

Randall, D. M. (1989). Taking stock: Can the theory of reasoned action explain unethical

conduct? Journal of Business Ethics, 8(11), 873-882.

Rawstorne, P., Jayasuriya, R., & Caputi, P. (2000). Issues in predicting and explaining

usage behaviors with the technology acceptance model and the theory of planned
behavior when usage is mandatory. Proceedings from the Twenty-first
International Conference on Information Systems, (pp. 35-44).

Rigopoulos, G. & Askounis, D. (2007). A TAM framework to evaluate users’ perception

towards online electronic payments. Journal of Internet Banking and Commerce,
12(3), 1-6. Retrieved May 6, 2008, from ABI/INFORM Global database.
(Document ID: 1454507231).

Robson, C. (2002). Real world research (3rd ed.). Malden, MA: Blackwell.

Ronis, D. L., Yates, J. F., & Kirscht, J. P. (1989). Attitudes, decisions, and habits as

determinants of repeated behavior. In A. R. Pratkanis, S. J. Breckler, & A. G.
Greenwald (Eds.), Attitude Structure and Function, (pp. 213-239). NJ: Lawrence
Erlbaum Associates.

Royce, W. W. (1970). Managing the Development of large software systems: Concepts

and techniques. In: Technical Papers of Western Electronic Show and Convention
(WesCon) August 25-28, Los Angeles, USA.

Savitskie, K., Royne, M. B., Persinger, E. S., Grunhagen, M., & Witte, C. L. (2007).

Norwegian internet shopping sites: An application & extension of the technology
acceptance model. Journal of Global Information Technology Management,
10(4), 54-73. Retrieved May 6, 2008, from ABI/INFORM Global database.
(Document ID: 1382170461).

Schneberger, S., Amoroso, D. L., & Durfee, A. (2007). Factors that influence the

performance of computer-based assessments: An extension of the technology
acceptance model. The Journal of Computer Information Systems, 48(2), 74-90.

http://www.interaction-design.org/references/conferences/technical_papers_of_western_electronic_show_and_convention_%28wescon%29.html
http://www.interaction-design.org/references/conferences/technical_papers_of_western_electronic_show_and_convention_%28wescon%29.html

www.manaraa.com

 181

Retrieved May 6, 2008, from ABI/INFORM Global database. (Document ID:
1427015491).

Schwarz, A. & Chin, W. (2007). Looking forward: Toward an understanding of the

nature and definition of IT acceptance. Journal of the Association for Information
Systems, 8(4), 230,232-243. Retrieved May 6, 2008, from ABI/INFORM Global
database. (Document ID: 1316739721).

Sejwacz, D. I., Ajzen, I., & Fishbein, M. (1980). Predicting and understanding weight

loss: Intentions, behaviors and outcomes’. In I. Ajzen and M. Fishbein (Eds.),
Understanding Attitudes and Predicting Social Behaviors. Englewood Cliffs, NJ:
Prentice-Hall, 101-112.

Sfetsos, P., Stamelos, I., Angelis, L., & Deligiannis, I. S. (2006). Investigating the impact

of personality types on communication and collaboration-viability in pair
programming. XP/Agile, 7, 43-52.

Sharda, R., Barr, S. H., & McDonnell, J. C. (1988). Decision support system

effectiveness: A review and empirical test. Management Science, 34(2), 139-159.

Sheil, B. A. (1981). The Psychological Study of Programming. ACM Computing Surveys,

13(1), 101-120.

Sheppard, B., Hartwick, J., & Warshaw, P. (1988). The theory of reasoned action: A

meta-analysis of past research with recommendations of modifications and future
research. Journal for Consumer Research, 15(3), 325-343.

Shneiderman, B. (1987). Designing the user interface. Reading, MA: Addison-Wesley.

Silva, L. (2007). Post-positivist Review of Technology Acceptance Model. Journal of the

Association for Information Systems, 8(4), 255-266. Retrieved May 6, 2008, from
ABI/INFORM Global database. (Document ID: 1316739741).

Singh, K., Leong, S. M., Tan, C. T., & Wong, K. C. (1995, January). A theory of

reasoned action perspective of voting behavior: Model and empirical test.
Psychology & Marketing, 12(1), 37-51.

Smith, H. J., & Keil, M. (2003). The reluctance to report bad news on troubled software

projects: A theoretical model. Information Systems Journal 13(1), 69-95.

Snedecor, G. W., & Cochran, W. G. (1967). Statistical methods (6th ed.). Ames, Iowa:

Iowa State University Press.

Snowden, S., Spafford, J., Michaelides, R., & Hopkins, J. (2006). Technology acceptance

and m-commerce in an operational environment. Journal of Enterprise

www.manaraa.com

 182

Information Management, 19(5), 525-539. Retrieved May 6, 2008, from
ABI/INFORM Global database. (Document ID: 1143455361).

Southerland, J. (2004, October). Agile development: Lessons learned from the first

SCRUM. Cutter Agile Project Management Advisory Service, Executive Update,
5(20), 1-6.

Sparks, P. & Guthrie, C. A. (1998). Self-identity and the theory of planned behavior: A

useful addition or an unhelpful artifice. Journal of Applied Social Psychology, 28,
1393-1410.

Sparks, P. & Shepherd, R. (1992). Self-identity and the theory of planned behavior:

Assessing the role of identification with “Green Consumerism.” Social
Psychological Quarterly, 55(4), 388-399.

Speier, C. & Venkatesh, V. (2002). The hidden minefields in the adoption of sales force

automation technologies. Journal of Marketing, 66(3), 98-111.

Standish Group International. (2001). The 2001 Chaos Report. The Standish Group

International, 27-33.

Standish Group International. (2004). The 2004 Chaos Report. The Standish Group

International, 49-53.

Stylianou, A. C. & Jackson, P. J. (2007). A comparative examination of individual

differences and beliefs on technology usage: Gauging the role of IT. The Journal
of Computer Information Systems, 47(4), 11-18. Retrieved May 6, 2008, from
ABI/INFORM Global database. (Document ID: 1313492751).

Sutton, S. (1998). Predicting and explaining intentions and behavior: How well are we

doing? Journal of Applied Social Psychology, 28(15), 1317-1338.

Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model.

Management Science, 42(1), 85. Retrieved May 6, 2008, from ABI/INFORM
Global database. (Document ID: 9474485).

Talby, D., Hazzan, O., Dubinsky, Y., & Keren, A. (2006). Agile software testing in a

large-scale project. Journal of IEEE Software, 23(4), 30-37.

Taylor, S. & Todd, P. A. (1995). Understanding information technology usage: A test of

competing models. Information Systems Research, 6(2), 144-176.

Terry, D. J., Hogg, M. A., & White, K. M. (1999). The theory of planned behavior: Self-

identity, social identity, and group norms. British Journal of Social Psychology,
38(3), 225-244.

www.manaraa.com

 183

Thomas, K. H., Bull, C., & Clark, J. (1978). Attitude measurement in the forecasting of

off-peak travel behavior. In P. W. Bonsall, Q. Dalvi, & P. J. Hills (Eds.), Urban
transportation planning: Current themes and future prospects. Tunbridge Wells,
UK: Abacus Press.

Thomas, L., Ratcliffe, M., & Robertson, A. (2003). Code warriors and code-a-phobes: A

study in attitude and pair programming. In the Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education, 363-367.

Tomayko, J. E. (2002). A comparison of pair programming to inspections of software

defect reduction. Journal of Computer Science Education, 12, 213-222.

Turk, D., France, R., & Rumpe, B. (2005). Assumptions underlying Agile software

development processes. Journal of Database Management, 16(4), 62-87.

Veiga, J. F., Floyd, S., & Dechant, K. (2001). Towards modeling the effects of national

culture on IT implementation and acceptance. Journal of Information Technology,
16(3), 145-158. Retrieved May 6, 2008, from ABI/INFORM Global database.
(Document ID: 667615621).

Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the technology

acceptance model: Four longitudinal field studies. Management Science, 46(2),
186-204. Retrieved May 6, 2008, from ABI/INFORM Global database.
(Document ID: 52438017).

Venkatesh, V. & Morris, M. G. (2000). Why don’t men ever stop to ask for directions?

Gender, social influence, and their role in technology acceptance and usage
behavior. MIS Quarterly, 24(1), 115-139.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of

information technology: Toward a unified view. MIS Quarterly, (27:3), 425-478.

Visaggio, C. A. (2005, May). Empirical validation of pair programming. Proceedings of

the ICSE 2005, St. Louis, Missouri.

Waguespack, L. & Schiano, W. T. (2004, Summer). Component-based IS architecture.

Information Systems Management, 8(3), 53-60.

Wallace, L., & Keil, M. (2004). Software project risks and their effect on outcomes.

Communications of the ACM, 47(4), 68-73.

Werner, L., Hanks, B., & McDowell, C. (2005, March). Pair programming helps female

computer science students persist. ACM Journal of Educational Resources in
Computing, 4(1), 127-132.

www.manaraa.com

 184

Williams, L. (1999, November). But isn’t that cheating? Collaborative programming.

Proceedings of the 29th Annual Frontiers in Education Conference, 2, 12B9/26-
12B9-27.

Williams, L. (2000). The collaborative software process. (Doctoral dissertation,

Department of Computer Science, University of Utah, 2000). (UMI No.
9968742).

Williams, L. (2001). Integrating pair programming into a software development process.

Proceedings from the 14th Conference on Software Engineering Education and
Training, USA.

Williams, L. (2007). Lessons learned form seven years of pair programming at North

Carolina State University. Inroads – SIGCSE Bulletin, 39(4), 79-83.

Williams, L. & Kessler, R. (2000, May). All I really wanted to know about pair

programming I learned in kindergarten. Communications of the ACM, 43(5), 108-
114.

Williams, L. & Kessler, R. (2003). Pair programming illuminated. Boston, MA:

Addison-Wesley.

Williams, L. & Kessler, R., Cunningham, W., & Jeffries, R. (2000). Strengthening the

case for pair programming. IEEE Software, 17, 19-25.

Williams, L., McDowell, C., Nagappan, N., Fernald, J., & Werner, L. (2003). Building

pair programming knowledge through a family of experiments. In the
International Symposium on Empirical Software Engineering (ISESE) 2003. (pp.
143-152), Rome, Italy.

Williams, L., Shukla, A., & Antón, A. I. (2004). An initial exploration of the relationship

between pair programming and brooks law. Proceedings of the Agile
Development Conference. San Francisco, CA.

Williams, L., Wiebe, E., Yang, K., Ferzli, M., & Miller, C. (2002). Support of pair

programming in the introduction computer science course, Computer Science
Education, 12(3), 197-212.

Wood, W. A. & Kleb, W. L. (2003). Exploring XP for scientific research. IEEE Software

20(1), 30-36.

Yousafzai, S. Y., Foxall, G. R., & Pallister, J. G. (2007). Technology acceptance: A

meta-analysis of the TAM: Part 1. Journal of Modeling in Management, 2(3),

www.manaraa.com

 185

251. Retrieved May 6, 2008, from ABI/INFORM Global database. (Document
ID: 1377079531).

Yousafzai, S. Y., Foxall, G. R., & Pallister, J. G. (2007). Technology acceptance: A

meta-analysis of the TAM: Part 2. Journal of Modeling in Management, 2(3),
281. Retrieved May 6, 2008, from ABI/INFORM Global database. (Document
ID: 1377079481).

Yu, J. C., Liu, C., & Yao, J. E. (2003). Technology acceptance model for wireless

Internet. Internet Research, 13(3), 206. Retrieved May 6, 2008, from
ABI/INFORM Global database. (Document ID: 358432131).

Zhang, X., Prybutok, V. R., & Koh, C. E. (2006). The role of impulsiveness in a TAM-

based online purchasing behavior model. Information Resources Management
Journal, 19(2), 54-68. Retrieved May 6, 2008, from ABI/INFORM Global
database. (Document ID: 1010746551).

Zin, A. M., Idris, S., & Subramaniam, N. K. (2005). Implementing virtual pair

programming in E-learning environments. Journal of Information Systems
Education, 17(2), 113-117.

Zmud, R. W. (1979). Individual differences and MIS success: A review of the empirical

literature. Management Science, 25(10), 966-979.

www.manaraa.com

 186

APPENDIX; ASSESSING THE ATTITUDES OF SOFTWARE DEVELOPMENT

MANAGERS ON THE USE OF PAIRED PROGRAMMING AS COMPARED TO

INDIVIDUAL PROGRAMMING

Note. From “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information
Technology” by Fred D. Davis, PhD, 1989, MIS Quarterly, 13(3), p. 340. Copyright 1989 by MIS
Quarterly. Adapted and reprinted with permission.

Perspectives on Paired Programming as Compared to Individual

Programming

Measuring Attitudes on Paired and Individual Software Development Programming
The following questions are designed to measure your experiences and attitudes about paired
programming practices as compared to Individual Programming. The term paired programming
is used to denote a specific programming practice used in Extreme Programming. It uses two
developers, working at a single workstation to produce code from general requirements or stories.
The term Individual Programming is used to represent the traditional, single programmer
development practice. This practice of software development generates code from technical
specifications and specific requirements, which are then segmented and distributed to individual
programmers. The word efficient is used in this survey to represent an easy, cost-effective means
of programming with a low incident of bugs or programming errors. The word effective is used in
this survey to represent the production of a desired result with a reduced effort and a more
accurate way of producing useable/executable code. You may exit from this survey at any time by
selecting the Exit Survey button.

This survey should only take 10 minutes to complete. Thank you for your candid responses.
Section I

1. Using the Paired Programming practice would enable my software development

group to develop software more quickly.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

2. Using Paired Programming would improve my software development group’s job

performance.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

3. Using Paired Programming in my software development group would increase

productivity.

www.manaraa.com

 187

Likely ___\ Unlikely
 extremely quite slightly neither slightly quite extremely

4. Using Paired Programming in my software development group would enhance the

effectiveness of producing code.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

5. Using Paired Programming would make it easier for my software development group

to produce software code.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

6. My software development group would find Paired Programming useful in carrying

out their software development responsibilities.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

7. Using Paired Programming in my software development group would enhance the

efficiency of producing code.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

Section II

8. Using the Individual Programming practice would enable my software development

group to develop software more quickly.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

9. Using Individual Programming would improve my software development group’s job

performance.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

10. Using Individual Programming in my software development group would increase

productivity.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

11. Using Individual Programming in my software development group would enhance the

effectiveness of producing code.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

12. Using Individual Programming would make it easier for my software development

group to produce software code.

www.manaraa.com

 188

Likely ___\ Unlikely
 extremely quite slightly neither slightly quite extremely

13. My software development group would find Individual Programming useful in

carrying out their software development responsibilities.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

14. Using Individual Programming in my software development group would enhance the

efficiency of producing code.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

Section III

15. Learning to employ and implement Paired Programming would be easy for my

software development group.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

16. My software development group would find it easy to get Paired Programming to

produce the type of software code they want.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

17. The implementation of Paired Programming would be clear and understandable to my

programming group.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

18. My software development group would find Paired Programming to be a flexible and

easy to engage practice.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

19. It would be easy for my software development group to become skillful at using

Paired Programming
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

20. My software development group would find Paired Programming easy to use.

Likely ___\ Unlikely
 extremely quite slightly neither slightly quite extremely

Section IV

www.manaraa.com

 189

21. Learning to employ and implement Individual Programming would be easy for my
software development group.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

22. My software development group would find it easy to get Individual Programming to

produce the type of software code they want.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

23. The implementation of Individual Programming would be clear and understandable to

my programming group.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

24. My software development group would find Individual Programming to be a flexible

and easy to engage practice.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

25. It would be easy for my software development group to become skillful at using

Individual Programming
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

26. My software development group would find Individual Programming easy to use.

Likely ___\ Unlikely
 extremely quite slightly neither slightly quite extremely

Section V

27. I intend to use the Paired Programming practice for my software development group

in the future.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

28. I intend to use the Individual Programming practice for my software development

group in the future.
Likely ___\ Unlikely

 extremely quite slightly neither slightly quite extremely

Section VI

29. Indicate number of years of programming experience you have in any programming

language? (Select only one)

 None <1 – 2 3 - 6 7 - 10 11 - 14 15 – 18 >18

www.manaraa.com

 190

30. Please indicate within what general type of business are you currently employed or
engaged? (Select only one)

 Agriculture, Forestry, and Fishing Wholesale Trade
 Mining Retail Trade
 Construction Finance, Insurance, and Real Estate
 Manufacturing Services
 Transportation, Communications,
Electric, Gas, and Sanitary Services

 Public Administration

31. What is your title/present position? (Select only one)

 Programmer/Analyst Software Development Director
 Senior Programmer/Analyst Software Development Manager
 Senior Software Development Engineer Software Development VP
 Software Development Group Lead CIO/CTO

If you would like a copy of the study results please type in your email address here. Your email
address will not be shared or distributed to any company or organization and will be used only to
send you a copy of the study results.

Thank you for taking the time to complete the survey!

[Submit Survey] [Exit Survey]

	List of Tables
	List of Figures
	CHAPTER 1. INTRODUCTION

	Introduction to the Problem
	Background of the Study
	History of the Agile Methodology Movement
	A History of Extreme Programming
	A Review of Paired Programming
	The Role of a Theoretical Framework to Advance the Study

	Statement of the Problem
	Purpose of the Study
	Rationale
	Research Questions
	Hypotheses

	Significance of the Study
	Definition of Terms
	Assumptions and Limitations
	The Nature and Theoretical Framework of the Study
	Organization of the Remainder of the Study
	Chapter 4 – Results
	Chapter 5 – Discussion, Implications, Recommendations
	CHAPTER 2. LITERATURE REVIEW

	The Theory of Reasoned Action and the Theory of Planned Behavior
	Theory of Reasoned Action
	Theory of Planned Behavior
	TRA and TpB Scope and Application
	Issues with the Application of the TRA. Mykytyn and Harrison (1993) based their investigation on the TRA for purposes of competitive advantage in organizations leveraging computing systems and computing products. They applied the TRA to market studies to determine if the relationship of attitude and behavior would result in a measure of intention and a predictor of action. They found (and confirmed) that a positive relationship existed between behavior, intention, attitude, and subject norms (environmental influences on behavior) as indicated by Ajzen (1991). They added that “salient consequences” (p. 4) and the corresponding evaluations of those consequences were the motivating actions toward the actual adoption of a course of action (or the acceptance of a process). Mykytyn and Harrison (1993) confirmed Ajzen and Fishbein’s TRA and noted its wide acceptance and capability to stand up to a positivistic structure through an equation-based representation.
	Practitioner Experience with the TRA. The warnings of Sheppard et al. (1988) are enough to warrant a review of various applications, in vitro, of the TRA and to what extent possible validity issues or failures in predictability were experienced. Singh, Leong, Tan, and Wong (1995) employed the TRA to measure voting behavior and model an empirical test for predicting that behavior. The authors used belief and importance components to ascertain the intention of the respondents to vote along a party line, choose affiliation to a party, predict what candidate a respondent might vote for, and motivation to be swayed by media for or against a candidate. The co-relational and regression analysis used in their study indicated that the predictive power of the TRA model was verified, although they suggested continued testing in certain empirical measurements (Singh et al., 1995). From a review of the literature search, it was evident the authors were aware of the considerations of Sheppard, Hartwick and Warshaw, and even referred to them in various areas. The researchers did not recognize the brittle nature between goal behavior and intentional behavior or the pending results that might have been produced by the behavior. Their methodology did not appear to be affected by the discrete differences in goal behavior and intention-oriented results (Singh et al., 1995).
	Extending the TRA Model to Applications in the TpB Model. The Theory of Reasoned Action was developed from models involved in the study of psychological expectancy values (Ajzen, 1987). The TRA was an attempt to estimate the differences between behavior and attitude with behavior considered voluntary. It was found that behaviors were sometimes involuntary and, in some cases, not under the control of the subject. The Theory of Planned Behavior introduced the addition of how subjects perceived their ability to control their environment and/or the outcome of the mixture of intention and attitude. The ability to control behavior became an added element to the TRA, creating the Theory of Planned Behavior and the ability to predict behavior, especially when it is deliberate and consciously planned (Manstead & Parker, 1995). Predicting behavior is fundamental to the theoretical framework of this study. As will be seen in the next section, The Technology Acceptance Model is a framework built upon the ability to predict use or adoption of a process or action by surveying the attitude, intention, and finally the applied behavior of the subject.

	The Technology Acceptance Model
	A Basic Understanding of The Technology Acceptance Model
	Additional Literature and Applications of The Technology Acceptance Model
	Understanding Problems Associated with General Measures of Behavior and Intention
	Comparing the Theory of Planned Behavior and The Technology Acceptance Model

	A Review of The Technology Acceptance Model’s Acceptance
	Examples of The Technology Acceptance Model Applied
	Modifying The Technology Acceptance Model
	Criticisms of The Technology Acceptance Model
	A Unified Technology Acceptance Model

	The Paired Programming Practice
	Understanding Paired Programming
	Case studies on Paired Programming
	Testing and Paired Programming Case Studies
	Case Studies Considering the Role Components of a Programming Pair

	Experiments in Paired Programming
	Measuring the Benefits of Paired Programming. The focus of the research in this study is on understanding the attitudes and intentions of software development managers to measure the perceived ease of use and perceived usefulness of paired programming in order to predict the practice in the future. The reason for this study is the contradiction in measures for the use of paired programming over the last nine years. There is also a grass roots concern in many businesses that they are spending too much for software development when observing two people work at one workstation (Flor, 2006).

	Paired Programming Studies
	Perceived Ease of Use and Usefulness of Paired Programming
	Paired Programming Surveys
	Experience Reports on Paired Programming
	Paired Programming and Education

	Summary
	CHAPTER 3. METHODOLOGY

	Research Design
	Methodological Approach Background
	General Methodological Approach

	Sampling
	Target Population
	Sample Frame Random Stratified Selection
	Sampling Methods

	Instrumentation and Measures
	Data Collection
	Using an eSurvey Engine
	Consent

	Data Analysis
	Meeting Statistical Guidelines
	Statistical Analysis Tools
	Statistical Tests Employed
	Statistical Tests Linked to Hypotheses
	Additional Hypotheses Tests
	Displaying Results

	Validity and Reliability of the Survey
	Survey Construction and Validity Measures
	Original Survey Validity Measures. The initial survey developed by Davis (1989) attained a Cronbach Alpha (1951) reliability value of 0.97 for the first variable of usefulness and .91 for the second variable for ease of use. Discriminant and convergent validity were attained through the multi-trait/multi-method matrix (MTMM) (Campbell & Fiske, 1959). It appears that the methods used in Davis’ original study were a combination of initial surveys, individual, face-to-face interviews, and post-questionnaires. Two methods were used: same traits-different method and different method-same trait. These were applied to the constructs of perceived usefulness and perceived ease of use. Because of the MTMM correlations, Davis (1989) altered some of his scaling to improve the survey for perceived ease of use. The final survey instrument forms the foundation of the one used in this study.
	Requirements for Validating the Current Survey
	Pre-Test Survey Plan for Validity and Reliability
	Results of the Pre-test Survey for Validation and Reliability
	Execution of the Main Research Survey

	Ethical Considerations
	CHAPTER 4. RESULTS

	Survey Response Results
	Analyzing the Response Rate
	Validating the Sample
	Additional Considerations beyond The Technology Acceptance Model Survey Data
	Three Influencing Considerations on Individual Response Differences

	Primary Hypotheses Analysis
	Statistical Analysis
	Hypotheses Analysis for Perceived Ease of Use
	Hypotheses Analysis for Perceived Usefulness
	Hypotheses Analysis for the Correlation of Perceived Usefulness and Ease of Use
	Regression Test to Confirm the Effects of Usefulness and Ease of Use on Usage. In Davis’ study (1989) applied the TAM to charting software use and then used regression analyses to confirm the effect of perceived usefulness on usage, when ease of use is controlled or limited. Davis’ significance values were stronger in his study compared to this study (see Table 11). Here the paired programming practice for usefulness shows a value of 0.50 and an ease of use value of 0.69 with no significance. For individual programming, usefulness shows a value of 0.80 and an ease of use value of 0.88. Both are moderately significant. The regression coefficients calculated for the paired practice and the individual practice were not significantly different (0.25 and 0.15 respectively). This confirms Davis’ findings, which found that usefulness tends to mediate the effects of ease of use when applied to usage. Considered in another way, usefulness contains the behavioral intentions of ease of use.

	Hypotheses Analysis for the Effect of Business Type on Usage
	Hypotheses Analysis on the Effect of Software Development Manager Experience on Usage
	A Review of Data Analysis and Hypotheses Support
	CHAPTER 5. DISCUSSION, IMPLICATIONS, RECOMMENDATIONS

	Discussion
	Review of the Findings
	Limitations of the Study

	Implications
	Recommendations
	REFERENCES
	APPENDIX; ASSESSING THE ATTITUDES OF SOFTWARE DEVELOPMENT MANAGERS ON THE USE OF PAIRED PROGRAMMING AS COMPARED TO INDIVIDUAL PROGRAMMING

